Graph Convolutional Networks with Kalman Filtering for Traffic Prediction(SIGSPATIAL 2020)
挑战包括:(1)交通传感器报告不可避免地存在偏差和噪声,(2)在现实世界中,不同依赖关系的权重不相等,限制了模型捕捉交通网络中真实动态的能力,且没有考虑其可靠性的不同等级
我们提出了一种新的深度学习框架,称为DKFN,通过两个流预测全网络流量状态,一个为自依赖建模,另一个为邻居依赖建模。其主要思想是,从传感器本身的历史观测和相邻传感器在一段时间内的单独观测中获取预测的可靠性。该框架融合并并基于自依赖和邻居依赖进行优化预测。
Kalman Filtering Network
我们的工作将自依赖和邻居依赖观测视为噪声测量,而不是精确的真值。因此,每次观测对于预测未来的交通状态并不是完全可靠的。为了减轻噪声的影响,增强交通状态建模的鲁棒性,利用卡尔曼滤波来适当地融合依赖关系。
为了处理噪声,我们使用卡尔曼滤波器从多个观测中获得准确的信息。具体来说,它们的概率分布函数可以通过乘法进行融合
通过重新组织和转换,可以将其重写为
为了进一步改善融合,我们添加了一个权重变量来重新平衡不同的观察结果
为了将其输入神经网络,我们可以去掉常数分母,因为自依赖和邻居依赖建模网络知道可伸缩性: