Graph Convolutional Networks with Kalman Filtering for Traffic Prediction(SIGSPATIAL 2020)

该研究提出了一种名为DKFN的深度学习框架,利用卡尔曼滤波处理交通传感器数据的噪声和不确定性。通过两个独立的流分别建模自依赖和邻居依赖,结合历史观测和相邻传感器数据,实现更准确的全网络流量预测,增强了模型对交通动态的捕捉能力和鲁棒性。
摘要由CSDN通过智能技术生成

Graph Convolutional Networks with Kalman Filtering for Traffic Prediction(SIGSPATIAL 2020)

挑战包括:(1)交通传感器报告不可避免地存在偏差和噪声,(2)在现实世界中,不同依赖关系的权重不相等,限制了模型捕捉交通网络中真实动态的能力,且没有考虑其可靠性的不同等级

我们提出了一种新的深度学习框架,称为DKFN,通过两个流预测全网络流量状态,一个为自依赖建模,另一个为邻居依赖建模。其主要思想是,从传感器本身的历史观测和相邻传感器在一段时间内的单独观测中获取预测的可靠性。该框架融合并并基于自依赖和邻居依赖进行优化预测。

 Kalman Filtering Network

我们的工作将自依赖和邻居依赖观测视为噪声测量,而不是精确的真值。因此,每次观测对于预测未来的交通状态并不是完全可靠的。为了减轻噪声的影响,增强交通状态建模的鲁棒性,利用卡尔曼滤波来适当地融合依赖关系。

为了处理噪声,我们使用卡尔曼滤波器从多个观测中获得准确的信息。具体来说,它们的概率分布函数可以通过乘法进行融合

通过重新组织和转换,可以将其重写为

为了进一步改善融合,我们添加了一个权重变量来重新平衡不同的观察结果

为了将其输入神经网络,我们可以去掉常数分母,因为自依赖和邻居依赖建模网络知道可伸缩性:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值