Graph Convolutional Networks with Kalman Filtering for Traffic Prediction(SIGSPATIAL 2020)

该研究提出了一种名为DKFN的深度学习框架,利用卡尔曼滤波处理交通传感器数据的噪声和不确定性。通过两个独立的流分别建模自依赖和邻居依赖,结合历史观测和相邻传感器数据,实现更准确的全网络流量预测,增强了模型对交通动态的捕捉能力和鲁棒性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Graph Convolutional Networks with Kalman Filtering for Traffic Prediction(SIGSPATIAL 2020)

挑战包括:(1)交通传感器报告不可避免地存在偏差和噪声,(2)在现实世界中,不同依赖关系的权重不相等,限制了模型捕捉交通网络中真实动态的能力,且没有考虑其可靠性的不同等级

我们提出了一种新的深度学习框架,称为DKFN,通过两个流预测全网络流量状态,一个为自依赖建模,另一个为邻居依赖建模。其主要思想是,从传感器本身的历史观测和相邻传感器在一段时间内的单独观测中获取预测的可靠性。该框架融合并并基于自依赖和邻居依赖进行优化预测。

 Kalman Filtering Network

我们的工作将自依赖和邻居依赖观测视为噪声测量,而不是精确的真值。因此,每次观测对于预测未来的交通状态并不是完全可靠的。为了减轻噪声的影响,增强交通状态建模的鲁棒性,利用卡尔曼滤波来适当地融合依赖关系。

为了处理噪声,我们使用卡尔曼滤波器从多个观测中获得准确的信息。具体来说,它们的概率分布函数可以通过乘法进行融合

通过重新组织和转换,可以将其重写为

为了进一步改善融合,我们添加了一个权重变量来重新平衡不同的观察结果

为了将其输入神经网络,我们可以去掉常数分母,因为自依赖和邻居依赖建模网络知道可伸缩性:

### MATLAB 实现时空图卷积网络用于交通流量预测 为了实现《Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting》中的方法,需要构建一个能够处理时空数据的框架。该框架主要由以下几个部分组成: #### 1. 数据预处理 在开始之前,需准备并清理交通流量数据集。这通常涉及缺失值填充、标准化以及创建邻接矩阵。 ```matlab % 假设 data 是 N x T 的矩阵, 其中 N 表示节点数, T 表示时间步长. data = load('traffic_data.mat'); % 加载交通流量数据 adj_matrix = create_adjacency_matrix(data); % 创建邻接矩阵函数 normalized_data = normalize_traffic_data(data); % 归一化交通流量数据 ``` #### 2. 构建图结构 通过定义道路之间的连接关系来建立图结构。这里使用邻接矩阵表示图的关系。 ```matlab function adj_matrix = create_adjacency_matrix(road_network) % road_network 应包含路段间距离或其他衡量标准的信息 distances = calculate_distances_between_roads(road_network); threshold = determine_threshold(distances); % 设定阈值 [N, ~] = size(distances); adj_matrix = zeros(N); for i = 1:N for j = 1:N if distances(i,j) <= threshold && i ~= j adj_matrix(i,j) = exp(-distances(i,j)^2 / (2*threshold^2)); end end end end ``` #### 3. 定义 ST-GCN 层 ST-GCN 结合了空间上的 GCN 和时间维度上的 CNN 来捕捉复杂的时空模式[^3]. ```matlab classdef STGCNLayer < nnet.layer.Layer properties K; % 支持的最大阶数 F_in; F_out; W; b; end methods function layer = STGCNLayer(K,F_in,F_out) layer.K = K; layer.F_in = F_in; layer.F_out = F_out; szW = [F_out,K+1,F_in]; layer.W = randn(szW)*0.01; layer.b = zeros(F_out,1); end function Z = predict(layer,X,A_hat) % X: 输入特征向量 (B,N,T,F_in), B 批次大小, N 节点数量, T 时间长度, F_in 特征维数 % A_hat: 预处理后的拉普拉斯矩阵 B = size(X,1); N = size(A_hat,1); T = size(X,3); H = cell(T,1); for t=1:T Xt = reshape(X(:,:,t,:),[],size(X,4)); % 将三维张量转换成二维矩阵 HT = []; for k=0:min(layer.K,size(A_hat,1)-1) AkX = power(A_hat,k)*Xt; HT = cat(2,HT,AkX); end H{t} = tanh(reshape(linear_combination(HT,layer.W)+repmat(layer.b',size(B*N,1),1),... [B,N,layer.F_out])); end Z = cat(3,H{:}); end function dLdW = backward(layer,dLdZ,X,A_hat) ... end end end ``` #### 4. 训练模型 设置超参数,并利用反向传播算法调整权重以最小化损失函数。 ```matlab num_epochs = 50; batch_size = 64; layers = [ imageInputLayer([input_height input_width channels]) convolution2dLayer(filterSize,numFilters,'Padding','same') batchNormalizationLayer() reluLayer() fullyConnectedLayer(outputSize) regressionLayer()]; options = trainingOptions('adam',... 'MaxEpochs', num_epochs,... 'MiniBatchSize', batch_size,... 'InitialLearnRate', 0.001,... 'Shuffle', 'every-epoch',... 'Verbose', false,... 'Plots', 'training-progress'); model = trainNetwork(trainingData,layers,options); ``` 请注意上述代码片段仅为概念验证性质,在实际应用时还需要考虑更多细节优化及调试工作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值