领域适应(DA)为新的问题领域提供了重用数据和模型的有价值的方法。然而,健壮的技术还没有考虑到具有不同数量的时间序列数据的可用性。在本文中,我们提出了三个主要的贡献来填补这一空白。首先,我们提出了一种新颖的时间序列数据卷积深度域适应模型(CoDATS),该模型在现实传感器数据基准测试中显著提高了与先进DA策略相比的准确性和训练时间。通过利用来自多个源域的数据,我们提高了CoDATS的有效性,从而进一步提高了以往单源方法的准确性,特别是在域之间具有高度可变性的复杂时间序列数据集上。其次,我们提出了一种新的弱监督域自适应(DA-WS)方法,该方法利用目标域标签分布形式的弱监督,可能比额外的数据标签更容易收集。第三,我们在不同的真实数据集上进行了全面的实验,以评估我们的领域适应和弱监督方法的有效性。结果表明,用于单源DA的CoDATS比最先进的方法有了显著的改进,并且我们使用来自多个源域和弱监督信号的数据在准确性方面取得了额外的改进