A Learning-based Method for Computing Shortest Path Distances on Road Networks(ICDE2021)

计算道路网络中两个顶点之间的最短路径距离是许多现实应用中的核心操作,例如找到最近的出租车/酒店。然而,现有的技术有几个限制。首先,传统的基于dijkstra的方法延迟较长,不能满足高性能的要求。其次,现有的基于索引的方法要么索引规模庞大,要么性能较差。为了解决这些限制,本文提出了一种基于学习的方法,它可以有效地计算一个近似的最短路径距离,这样(1)性能超级快,例如,需要60-150纳秒;(2)近似结果的误差率非常小,小于0.7%;(3)可以很好地扩展到大型道路网络,例如数百万个节点。其关键思想是首先将道路网络嵌入到低维空间中,获取顶点之间的距离关系,得到每个顶点的嵌入向量,然后对嵌入向量进行距离度量(L1度量)来近似最短路径距离。我们提出了一种层次模型来表示嵌入,并设计了一种有效的训练模型的方法。我们还设计了一种微调方法来明智地选择高质量的训练数据。在真实世界的数据集上进行的大量实验表明,我们基于嵌入的方法明显优于最先进的方法

阅读者总结:论文对常见的最短路径问题作了创新做法,即利用了embedding 方法实现查询,应该说这种方法在性能上比传统的最短路径算法要好很多。文中利用的方法主要是图分割和embedding层次树,这种方法值得借鉴。在常规中embedding被创造成不同结构是很难理解的,但是文中提供了一种新的模式。当然图嵌入方法本身也能够解释清楚这种方法。所以说文中在这种问题上具有很强的创新新。

其次,在路网结构中,我们优先会想到图结构,然后将整个图形实现图嵌入,在高维空间中实现距离的度量,这种方法加速了计算效果。因此关键点在于如何有效实现路网图嵌入,这在图学习中很常见。

挑战:

有三个挑战。首先,设计一种有效的表示模型,该模型能够捕捉遍布整个路网的顶点之间的距离关系。我们提出了一个分层嵌入模型。二是高效、有效地训练嵌入模型。我们提出了一种分层嵌入训练的方法。三是选择高质量的训练样本,以达到较低的估计误差。我们设计了一种微调方法来明智地选择高质量的训练数据。

问题

 

 

 Training

 

 HIERARCHICAL RNE MODEL

主要为了克服  1)首先,由于向量空间过于稀疏,如果我们直接训练模型,很难收敛  2)其次,训练样本的选择要谨慎,因为|V|顶点分布在整个路网中,很难训练出所有符合路网中所有顶点全局布局对。

1)Hierarchical Embedding Model

为了充分利用道路网络固有的层次结构,我们将道路网络图迭代划分为子图,并构造树形结构来获取结构信息。1) Graph Partitioning Hierarchy: 为了充分利用道路网络固有的层次结构,我们将道路网络图迭代划分为子图,并构造树形结构来获取结构信息 2) Hierarchical Model: 我们利用树形结构构建了分层嵌入模型

 

 

 

       B. Hierarchical Model Training

      1)分层学习框架:分层RNE模型的学习框架如图6和算法1所示。给定一个路网G = (V, E,W),我们首先构建一个树形结构(图4),我们将学习一个L级的局部嵌入层次(图5),分3个阶段进行。

 

 

 

 

 V. TRAINING SAMPLE SELECTION

更多的训练数据并不能带来更好的嵌入性能,因为预测信息的增长速度慢于香农熵[6]的数量。此外,在数据分布不可预测的情况下,庞大的训练数据可能会导致过拟合。因此,我们需要选择合适的训练样本数量,既能恰当地表示路网,又能满足我们模型的容量

A. Samples for Hierarchy Embedding   目标是选择高质量的训练样本用于将子图嵌入到给定的级别l中。 

B. Samples for Vertices Embedding 目标是选择高质量的训练样本用于嵌入顶点。我们更新顶点嵌入以获取相关叶节点中顶点的相对位置。

EXPERIMENTS

 

 

 

 

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值