动态链路预测旨在预测动态网络中节点未来的边,是网络科学中的一个重要问题,在现实世界中有着广泛的应用。动态网络的一个重要特性是,随着时间的推移,新的节点和链接不断出现,而这些新节点在到达时通常只有少量的链接。然而,如何预测动态网络中这些数量较少的节点未来的链路还没有得到很好的研究。现有的动态网络表示学习方法没有针对小样本场景,导致学习效果欠佳。为此,提出了一种基于元学习框架的动态网络小样本链路预测模型(MetaDyGNN)。具体而言,提出了一种基于分层时间区间和节点自适应的元学习器来提取这一问题背后的通用知识。设计了一个简单有效的动态图神经网络(dynamic graph neural network, GNN)模块来刻画元学习任务中每个节点的局部结构。因此,学习到的通用知识作为模型的初始化,只需在少量链接上进行微调,即可快速适应新节点。在3个公开数据集上的实验结果表明,MetaDyGNN的性能明显优于当前最先进的方法。
本文是元学习在连接预测上的应用
METHODOLOGY
提出了一种新的方法MetaDyGNN来解决动态网络中的少镜头链路预测问题。具体来说,我们的框架的设计和构建是为了应对两个挑战
•如何通过元学习提取形成动态链接的一般知识?
•如何定制动态gnn在元学习设置中更好的泛化能力?
Link Prediction based on Dynamic GNN