轨迹相似度计算是轨迹数据分析领域许多应用的基石。为了解决计算轨迹间精确相似度的高时间复杂度问题,基于学习的模型在相似度计算时间和学习相似度的准确性之间取得了很好的权衡。由于无论轨迹大小如何,每条轨迹都可以用一个固定长度的向量表示,因此轨迹间的相似性计算具有较高的时间效率。然而,这些基于学习的模型是基于循环神经网络(RNN)设计的,不能正确捕捉轨迹之间的相关性。此外,这些基于学习的模型只是在训练中使用特定相似性度量的轨迹对的相似性分数,而忽略了一个重要的信息:当计算相似性分数时,两个轨迹之间的点的映射很容易获得。
这些激励我们设计了一个新的基于学习的模型,名为TMN,基于注意力网络,旨在显著提高准确性,以便在相似度计算时间和准确性之间实现更好的权衡。提出的匹配机制通过计算点对的注意力权重来关联轨迹上的点,从而使TMN学会模拟轨迹对之间的相似度计算。除了考虑轨迹间的相互作用外,还考虑了每条轨迹的时序信息,从而充分利用了一对轨迹的空间特征。在广泛的轨迹距离度量下,在真实数据集上评估了各种方法。实验结果表明,TMN在准确率上优于现有方法。消融实验验证了所提匹配机制的有效性。