TMN: Trajectory Matching Networks for Predicting Similarity

本文提出了一种新的基于学习的模型TMN,利用注意力网络改进轨迹相似度计算,通过考虑轨迹间的交互和时序信息,实现在高精度和低时间复杂度之间的优化。实验结果显示TMN在多种距离度量下表现优于现有方法。
摘要由CSDN通过智能技术生成

轨迹相似度计算是轨迹数据分析领域许多应用的基石。为了解决计算轨迹间精确相似度的高时间复杂度问题,基于学习的模型在相似度计算时间和学习相似度的准确性之间取得了很好的权衡由于无论轨迹大小如何,每条轨迹都可以用一个固定长度的向量表示,因此轨迹间的相似性计算具有较高的时间效率。然而,这些基于学习的模型是基于循环神经网络(RNN)设计的,不能正确捕捉轨迹之间的相关性。此外,这些基于学习的模型只是在训练中使用特定相似性度量的轨迹对的相似性分数,而忽略了一个重要的信息:当计算相似性分数时,两个轨迹之间的点的映射很容易获得。

这些激励我们设计了一个新的基于学习的模型,名为TMN,基于注意力网络,旨在显著提高准确性,以便在相似度计算时间和准确性之间实现更好的权衡。提出的匹配机制通过计算点对的注意力权重来关联轨迹上的点,从而使TMN学会模拟轨迹对之间的相似度计算。除了考虑轨迹间的相互作用外,还考虑了每条轨迹的时序信息,从而充分利用了一对轨迹的空间特征。在广泛的轨迹距离度量下,在真实数据集上评估了各种方法。实验结果表明,TMN在准确率上优于现有方法。消融实验验证了所提匹配机制的有效性。 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值