TMN: Trajectory Matching Networks for Predicting Similarity

轨迹相似度计算是轨迹数据分析领域许多应用的基石。为了解决计算轨迹间精确相似度的高时间复杂度问题,基于学习的模型在相似度计算时间和学习相似度的准确性之间取得了很好的权衡由于无论轨迹大小如何,每条轨迹都可以用一个固定长度的向量表示,因此轨迹间的相似性计算具有较高的时间效率。然而,这些基于学习的模型是基于循环神经网络(RNN)设计的,不能正确捕捉轨迹之间的相关性。此外,这些基于学习的模型只是在训练中使用特定相似性度量的轨迹对的相似性分数,而忽略了一个重要的信息:当计算相似性分数时,两个轨迹之间的点的映射很容易获得。

这些激励我们设计了一个新的基于学习的模型,名为TMN,基于注意力网络,旨在显著提高准确性,以便在相似度计算时间和准确性之间实现更好的权衡。提出的匹配机制通过计算点对的注意力权重来关联轨迹上的点,从而使TMN学会模拟轨迹对之间的相似度计算。除了考虑轨迹间的相互作用外,还考虑了每条轨迹的时序信息,从而充分利用了一对轨迹的空间特征。在广泛的轨迹距离度量下,在真实数据集上评估了各种方法。实验结果表明,TMN在准确率上优于现有方法。消融实验验证了所提匹配机制的有效性。 

### 深度Q网络(DQN)在兴趣点(POI)推荐系统中的应用 深度Q网络(Deep Q-Network, DQN)是一种强化学习算法,它结合了神经网络和Q-learning的思想,用于解决离散动作空间下的决策问题。在兴趣点(Point of Interest, POI)推荐系统中,DQN可以被用来建模用户的动态行为并提供个性化的推荐。 #### 用户轨迹匹配与相似性预测 论文《TMN: Trajectory Matching Networks for Predicting Similarity》提出了基于轨迹匹配网络的方法来预测用户之间的相似性[^1]。这种方法可以通过分析历史访问记录构建用户间的关联关系,从而提高推荐系统的准确性。虽然该方法主要关注于轨迹数据的处理,但它为引入强化学习技术提供了理论基础。 #### 复合奖励函数的设计 对于多目标优化场景下,例如同时考虑POI的相关性、流行性和多样性的推荐任务,设计合理的奖励机制至关重要。正如MORL-Trip所展示的那样,通过定义综合反映多个维度价值的奖励信号,可以使模型更好地平衡不同方面的需求[^2]: \[ R(s,a)=\alpha \cdot r_{relevance}+\beta \cdot r_{popularity}+\gamma \cdot r_{diversity}, \] 其中 \(r_{relevance}\), \(r_{popularity}\), 和\(r_{diversity}\)分别代表当前状态下采取行动a所带来的相关性得分、受欢迎程度加分以及多样性增益;而参数α, β, γ则控制各部分权重比例。 #### 地理信息融合的状态表示 为了捕捉地理位置特征及其时间序列特性,在状态向量S中除了包含常规项目外还需加入地理坐标(x,y),甚至还可以扩展至天气状况等外部因素的影响评估。这种增强型表征有助于提升智能体对未来可能发生的事件做出更精准预判的能力。 #### 实现细节说明 以下是利用Python实现的一个简化版伪代码框架,展示了如何将上述概念付诸实践: ```python import tensorflow as tf from collections import deque class DQNAgent: def __init__(self, state_size, action_size): self.state_size = state_size self.action_size = action_size self.memory = deque(maxlen=2000) # 创建两个相同的神经网络结构作为online network和target network self.model = self._build_model() self.target_model = self._build_model() def _build_model(self): model = tf.keras.Sequential([ tf.keras.layers.Dense(24, input_dim=self.state_size, activation='relu'), tf.keras.layers.Dense(24, activation='relu'), tf.keras.layers.Dense(self.action_size, activation='linear') ]) model.compile(loss="mse", optimizer=tf.optimizers.Adam()) return model def remember(self, state, action, reward, next_state, done): self.memory.append((state, action, reward, next_state, done)) def act(self, state, epsilon): if np.random.rand() <= epsilon: return random.randrange(self.action_size) q_values = self.model.predict(state)[0] return np.argmax(q_values) def replay(self, batch_size, gamma): minibatch = random.sample(self.memory, min(len(self.memory), batch_size)) states, targets_f = [], [] for state, action, reward, next_state, done in minibatch: target = reward if not done: target += gamma * np.amax(self.target_model.predict(next_state)[0]) target_f = self.model.predict(state) target_f[0][action] = target states.append(state[0]) targets_f.append(target_f[0]) history = self.model.fit(np.array(states), np.array(targets_f), epochs=1, verbose=0) loss = history.history['loss'][0] return loss def update_target_network(self): weights = self.model.get_weights() self.target_model.set_weights(weights) ``` 此段脚本仅作示范用途,并未完全体现实际部署过程中所需的各种调整措施比如经验回放(experience replay)或者固定q目标(fixed-q-targets)等等复杂技巧的应用情况。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值