Multi-Variate Time Series Forecasting on Variable Subsets(KDD2022)

本文探讨了在存在长期数据丢失或资源领域切换时,MTSF模型的鲁棒性问题。通过实验展示了现有方法在变子集预测(VSF)中的性能下降,提出了一种非参数包装技术,能有效恢复模型性能,即使仅15%变量可用。
摘要由CSDN通过智能技术生成

本文在多变量时间序列预测(MTSF)领域制定了一种新的推理任务,称为变子集预测(VSF)在推理过程中只有一小部分变量可用。在推理过程中,由于长期的数据丢失,变量是缺失的。传感器故障)或高→低资源域在训练/测试之间切换。据我们所知,在存在此类故障时,MTSF模型的鲁棒性还没有在文献中研究过。通过广泛的评估,本文首先表明,最先进方法的性能在VSF设置中显著下降。本文提出一种非参数的包装技术,可应用于任何现有的预测模型。通过对4个数据集和5个预测模型的系统实验,表明所提出技术能够恢复模型近95%的性能,即使只有15%的原始变量存在。

 Variables are absent during inference because of longterm data loss (eg. sensor failures) or high→low-resource domain shift between train / test. 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值