本文在多变量时间序列预测(MTSF)领域制定了一种新的推理任务,称为变子集预测(VSF),在推理过程中只有一小部分变量可用。在推理过程中,由于长期的数据丢失,变量是缺失的。传感器故障)或高→低资源域在训练/测试之间切换。据我们所知,在存在此类故障时,MTSF模型的鲁棒性还没有在文献中研究过。通过广泛的评估,本文首先表明,最先进方法的性能在VSF设置中显著下降。本文提出一种非参数的包装技术,可应用于任何现有的预测模型。通过对4个数据集和5个预测模型的系统实验,表明所提出技术能够恢复模型近95%的性能,即使只有15%的原始变量存在。
Variables are absent during inference because of longterm data loss (eg. sensor failures) or high→low-resource domain shift between train / test.