GEML模型

3、简介
除了预测某一区域内可能的乘客需求数量外,了解每次出行的来源地和目的地的乘客需求也很重要。因为不同时段两个区域之间的需求量不仅承载着乘客需求的强度,而且有利于挖掘有用的出行模式。本文从一个新的角度研究了乘客需求模型,即OD矩阵预测(ODMP)。OD矩阵包含两个方面的信息: (1)不同的OD组合; (2)每个OD对的旅客需求数量。ODMP的目标是预测在给定时间段内从一个地理区域到另一个地理区域的叫车订单数量。为了同时兼顾出行产生量和目的地,时空特性以及数据稀疏性,本文提出了一种基于网格嵌入的单馈多任务学习模型(GEML),以基于图对出行模式进行建模。具体来说,我们用图表示与地理区域相关的乘客订单记录,其中节点表示地理区域(以网格形式定义),节点之间的边表示乘客需求,边权重表示订单数量。利用改进后的网格,可以构造出给定时间间隔内的OD矩阵。如图1所示,将区域划分为16个网格,订单记录汇总在相应的OD矩阵中。

本文模型的灵感来自于最近大火的GCNs,然而如果我们直接将已有的GCNs应用到OD矩阵所生成的图上,由于数据稀疏,学习到的具有很少订单的网格嵌入往往是不可靠和无效的,此外,如果没有任何历史订单记录的孤立节点(例如,新建社区),学习到的网格嵌入也是不可行的(无论作为O点还是D点)。为了缓解数据的稀疏性问题,我们提出基于地理学第一定律探索网格的地理相关性,即所有的东西都是相关的,但附近的东西比遥远的东西更相关。例如,在两个地理位置相近的网格中,乘客需求的数量往往接近彼此。特别地,我们考虑了网格嵌入部分的两种邻域,即地理邻域(地理上相邻的)和语义领域(通过OD流连接起来的)。前者用于度量一个网格与其邻域之间的内在紧密程度,后者用于对网络OD之间的交通流强度建模。

基于网格嵌入学习得到的网格的表示,结合乘客需求的重要时间信息,设计了一个面向ODMP的多任务神经网络。受既有工作的启发,我们对一个网格的流入流和流出流分别建模,预测每个网格在不同时间段的流入和流出需求数量。引入这两个子任务的基本原理是,我们能够在每个网格上单独捕获更多的动态出行模式。通过补充两个单独的子任务,总体需求预测任务可以捕获更强的内在时间模式,因为每个网格中的总体需求具有更大的规模或粒度。例如,在早高峰时段,当网格划分的粒度很小时,网约车需求的目的地可能存在很大不同,导致数据稀疏性问题,这意味着乘客需求的目的地可能分布得非常广泛,但这些网格的总流入流和流出流是非常大的。

本文主要贡献如下:

(1)提出OD矩阵预测问题预测给定时间段内的OD乘客需求,这对于网约车平台运营管理具有重要意义。

(2)将研究区域划分为网格,设计了网格嵌入网络,通过在新定义的网格邻域(地理和语义邻域)之间的图卷积,对每个网格进行嵌入,该网络通过模仿GCNs中的信息传递模式来模拟不同网格之间的OD流关系。

(3)借助LSTM设计了一个多任务学习网络用于捕捉乘客需求的时间趋势。两个子任务预测网格中的单个流入流和流出流需求,而主任务预测每对网格之间的需求。

(4)在两个真实大规模叫车数据集上的大量实验表明提出的GEML模型性能优于基准模型。

4、模型框架


GEML模型能同时捕获空间和时间特性。从空间角度出发,提出了一种基于邻域的网格嵌入方法,通过聚集邻域信息来学习每个网格的向量表示。从时间的角度,我们设计了一个多任务学习框架来模拟乘客需求随时间的动态趋势。接下来,我们将介绍网格嵌入和多任务学习的技术细节。

  • 5
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值