Trajectory-driven Influential Billboard Placement

本文探讨了在预算约束下,如何通过Trajectory-driven Influential Billboard Placement算法有效地选择广告牌,减少重叠影响,利用局部性降低计算成本。提出PartSel和LazyProbe方法,分别基于聚类与惰性探测,实现了(1-1/e)近似保证。实验证明了方法的有效性和高效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Trajectory-driven Influential Billboard Placement

本文提出并研究了轨迹驱动的有影响力的广告牌放置问题:给定一组广告牌U(每个广告牌都有位置和成本)、一个轨迹数据库Tand一个预算L,在预算范围内找到一组广告牌来影响最多数量的轨迹。其中一个核心挑战是识别和减少不同广告牌对同一轨迹的影响重叠,同时考虑预算限制。本文证明该问题是np难的,并提出了近似比为(1−1/e)的枚举算法。然而,当|u |较大时,基于枚举的方法开销较大。利用广告牌影响力的局部性,提出了一种基于划分的框架PartSel。PartSel将U划分为一组小的簇,计算每个簇的局部影响广告牌,并将其合并生成全局解。由于局部解的求解效率远高于全局解,因此PartSel算法大大减少了计算量;同时,该算法具有非平凡的近似比保证然后提出LazyProbe方法进一步修剪具有低边际影响的广告牌,同时实现与PartSel相同的近似比。在真实数据集上的实验验证了所提方法的高效性和有效性。 

一研究问题

轨迹驱动的影响力广告牌放置问题:给定一组广告牌(每个广告牌都有位置且成本不一致)、一个轨迹数据库和一个预算约束L,在预算L内找到一组广告牌,使放置在选定广告牌上的广告影响最多的轨迹数量。

 主要目标是在预算范围内最大化影响力,这对广告商来说至关重要,因为每个广告牌的平均成本并不便宜。

第二个目标是在实现相同的竞争影响值的同时避免昂贵的计算,以便在不同的预算分配情况下对部署方案进行及时的分析

挑战:1)首先,一个用户的轨迹会受到多个广告牌的影响,这就导致了广告牌之间的影响重叠。

图1显示了6个广告牌(b1,…, b6)和6条轨迹(t1,…t6)。每个广告牌都与一个半径为λ的圆相关联作为其影响范围。如果所选的广告牌在其受影响的轨迹中有很大的重叠,广告商可能会浪费钱反复影响已经看过广告的受众。

2)由于预算约束L和不同广告牌成本的不均匀性,使得优化问题错综复杂。

 二研究方法:

本文首先利用枚举技术[8]提出了一种贪心算法EnumSel,该算法可以为TIP(第3节)提供(1−1/e)-近似。然而,该算法的运行复杂度为O(|T|·|U|5),其中|T|和|U|分别是轨迹和广告牌的数量。

为了避免这种高计算代价,利用广告牌影响力的局部性,提出了一种基于划分的广告牌聚类框架PartSel(第4节)其核心思想是:首先,将广告牌划分为一组影响力重叠度小的聚类;其次,执行枚举算法寻找局部解;然后,根据不同簇维护的局部解,利用动态规划方法构建全局解;

 为了进一步提高我们的PartSel框架的效率,我们设计了一种惰性探测方法,通过主动估计每个集群的上界,并仅在一个集群的上界很重要时结合来自该集群的结果

 

 

 

 

 

 OUR FRAMEWORK

我们首先提出了从一般预算最大覆盖(BMC)问题的算法扩展而来的两个方法。

1)basic greedy algorithm

2)Enumeration Greedy Algorithm

在保持可接受的效率的同时,将影响力最大化是至关重要的。因此,我们利用[8]中提出的基于枚举的解来获得(1−1/e)-逼近。

 A Partition-based Framework

我们的问题有一个距离要求,如果一个广告牌影响轨迹,轨迹必须有一个靠近广告牌的点(λ范围内的距离)。所有现有的技术都忽略了这一重要特性。经过仔细的研究,我们观察到,在现实世界中,大多数轨迹都跨越一个小的区域.

因此,我们利用这些局部特征提出了一种基于划分的PartSel方法。直观地说,我们将U划分为一组小的簇,为每个簇计算局部有影响力的广告牌,并将它们合并以生成U的全局有影响力的广告牌。由于局部聚类的广告牌数量较少,该方法在保持竞争影响力质量的同时大大减少了计算量。

1)Partition

 Lazy Probe 

PARTITION BASED METHOD 

1)Partition based Selection Method

 

 1)θ-partition

为了减少簇间的重叠影响,引入重叠率的概念,控制一个簇的任意子集与其他所有簇的最大重叠率 

 

给定重叠率,我们提出θ-partition的概念来权衡簇的大小和簇的重叠,其中θ是一个用户定义的参数,用于控制划分的粒度。 

2)Finding a θ-partition

值得注意的是,在u中可能存在多个θ-分区.寻找一个好的θ-划分并不是微不足道的,因为它可以建模为平衡k-切割问题,其中图中的每个顶点是一个广告牌,每条边表示两个影响重叠的广告牌,这被发现是np难的.

我们采用一种层次聚类算法[17]来近似地利用θ-划分。它首先将每个billboard初始化为自己的簇,然后迭代地将这两个簇合并为一个,如果它们的重叠率(公式5)大于θ。即对于每一对聚类Ci,Cj⊆U, if ϑij 大于θ,则Ci和Cj将合并。通过重复这个过程,当U中没有聚类可以合并时,得到近似的θ-划分。

 LAZY PROBE

与PartSel类似,我们采用动态规划的方法来计算选定的广告牌集合及其对每个聚类i和每个成本l的影响值。

 

阅读者总结:这篇论文很有趣,这个问题本身很有意思。应该说是典型的组合优化问题,解决方法水到渠成,但是没有觉得很眼前一亮,基本上遵循了贪心-分组-剪枝-优化,这几个套路方法。2)文中对问题的分析和理论上的证明很详细,值得学习。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值