Multi-Graph Fusion Networks for Urban Region Embedding
从人类移动数据中学习城市区域的嵌入可以揭示区域的功能,然后实现相关但不同的任务,如犯罪预测。人体移动数据包含了丰富而丰富的信息,可以为跨域任务提供全面的区域嵌入。本文提出多图融合网络(MGFN)来实现跨域预测任务。首先,通过移动图融合模块将具有时空相似性的图作为移动模式进行融合;然后,在移动模式联合学习模块中,设计了基于模式内和模式间信息的多层次交叉注意力机制,从多种移动模式中综合学习嵌入信息;最后,在真实城市数据集上进行了广泛的实验。实验结果表明,MGFN的性能比现有方法最高提高了12.35%。
总结:主要模拟人类跨区域流动问题,采用了建模人类流动模式为图结构,然后利用图模式间特征与图模式内部特征实现联合学习,实现下游任务的预测