Multi-Graph Fusion Networks for Urban Region Embedding

本文提出了一种名为Multi-GraphFusionNetworks(MGFN)的方法,用于从移动数据中学习城市区域的嵌入,以进行跨域预测任务,如犯罪预测。MGFN通过融合具有时空相似性的移动图,并采用多层次交叉注意力机制从不同移动模式中学习区域信息。实验结果显示,MGFN在性能上较现有方法提升了12.35%。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Multi-Graph Fusion Networks for Urban Region Embedding

从人类移动数据中学习城市区域的嵌入可以揭示区域的功能,然后实现相关但不同的任务,如犯罪预测。人体移动数据包含了丰富而丰富的信息,可以为跨域任务提供全面的区域嵌入。本文提出多图融合网络(MGFN)来实现跨域预测任务首先,通过移动图融合模块将具有时空相似性的图作为移动模式进行融合;然后,在移动模式联合学习模块中,设计了基于模式内和模式间信息的多层次交叉注意力机制,从多种移动模式中综合学习嵌入信息;最后,在真实城市数据集上进行了广泛的实验。实验结果表明,MGFN的性能比现有方法最高提高了12.35%。 

 

 

 总结:主要模拟人类跨区域流动问题,采用了建模人类流动模式为图结构,然后利用图模式间特征与图模式内部特征实现联合学习,实现下游任务的预测

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值