Practical Adversarial Attacks on Spatiotemporal Traffic Forecasting Models

Practical Adversarial Attacks on Spatiotemporal Traffic Forecasting Models

 

基于机器学习的交通预测模型利用复杂的时空自相关性来提供城市范围的交通状态的准确预测。然而,现有方法假设一个可靠和无偏的预测环境,这在实际环境中并不总是可用。本文研究了时空流量预测模型的脆弱性,提出了一种实用的对抗时空攻击框架。具体而言,不是同时攻击所有地理分布的数据源,而是提出一种迭代梯度引导的节点显著性方法来识别时间依赖的受害节点集合。此外,设计了一种基于时空梯度下降的方法来生成扰动约束下的实值对抗交通状态。同时,从理论上证明了对抗性流量预测攻击的最差性能界。在两个真实数据集上的广泛实验表明,所提出的两步框架在各种先进的时空预测模型上实现了高达67.8%的性能下降。使用所提出的攻击进行对抗性训练,可以显著提高时空流量预测模型的鲁棒性。 

Methodology

详细介绍了实用的对抗时空攻击框架。具体来说,该框架包括两个步骤:(1)识别时间依赖的受害节点,(2)利用对抗流量状态进行攻击。 

3.1 Identify time-dependent victim nodes

Adversarial attacks are a major concern in the field of deep learning as they can cause misclassification and undermine the reliability of deep learning models. In recent years, researchers have proposed several techniques to improve the robustness of deep learning models against adversarial attacks. Here are some of the approaches: 1. Adversarial training: This involves generating adversarial examples during training and using them to augment the training data. This helps the model learn to be more robust to adversarial attacks. 2. Defensive distillation: This is a technique that involves training a second model to mimic the behavior of the original model. The second model is then used to make predictions, making it more difficult for an adversary to generate adversarial examples that can fool the model. 3. Feature squeezing: This involves converting the input data to a lower dimensionality, making it more difficult for an adversary to generate adversarial examples. 4. Gradient masking: This involves adding noise to the gradients during training to prevent an adversary from estimating the gradients accurately and generating adversarial examples. 5. Adversarial detection: This involves training a separate model to detect adversarial examples and reject them before they can be used to fool the main model. 6. Model compression: This involves reducing the complexity of the model, making it more difficult for an adversary to generate adversarial examples. In conclusion, improving the robustness of deep learning models against adversarial attacks is an active area of research. Researchers are continually developing new techniques and approaches to make deep learning models more resistant to adversarial attacks.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值