LinearSVC在python 中的说明

/home/hp/anaconda3/lib/python3.6/site-packages/sklearn/svm/classes.py

 

    """Linear Support Vector Classification.

    Similar to SVC with parameter kernel='linear', but implemented in terms of
    liblinear rather than libsvm, so it has more flexibility in the choice of
    penalties and loss functions and should scale better to large numbers of
    samples.

    This class supports both dense and sparse input and the multiclass support
    is handled according to a one-vs-the-rest scheme.

    Read more in the :ref:`User Guide <svm_classification>`.

    Parameters
    ----------
    penalty : string, 'l1' or 'l2' (default='l2')
        Specifies the norm used in the penalization. The 'l2'
        penalty is the standard used in SVC. The 'l1' leads to ``coef_``
        vectors that are sparse.

    loss : string, 'hinge' or 'squared_hinge' (default='squared_hinge')
        Specifies the loss function. 'hinge' is the standard SVM loss
        (used e.g. by the SVC class) while 'squared_hinge' is the
        square of the hinge loss.

    dual : bool, (default=True)
        Select the algorithm to either solve the dual or primal
        optimization problem. Prefer dual=False when n_samples > n_features.

    tol : float, optional (default=1e-4)
        Tolerance for stopping criteria.

    C : float, optional (default=1.0)
        Penalty parameter C of the error term.

    multi_class : string, 'ovr' or 'crammer_singer' (default='ovr')
        Determines the multi-class strategy if `y` contains more than
        two classes.
        ``"ovr"`` trains n_classes one-vs-rest classifiers, while
        ``"crammer_singer"`` optimizes a joint objective over all classes.
        While `crammer_singer` is interesting from a theoretical perspective
        as it is consistent, it is seldom used in practice as it rarely leads
        to better accuracy and is more expensive to compute.
        If ``"crammer_singer"`` is chosen, the options loss, penalty and dual
        will be ignored.

    fit_intercept : boolean, optional (default=True)
        Whether to calculate the intercept for this model. If set
        to false, no intercept will be used in calculations
        (i.e. data is expected to be already centered).

    intercept_scaling : float, optional (default=1)
        When self.fit_intercept is True, instance vector x becomes
        ``[x, self.intercept_scaling]``,
        i.e. a "synthetic" feature with constant value equals to
        intercept_scaling is appended to the instance vector.
        The intercept becomes intercept_scaling * synthetic feature weight
        Note! the synthetic feature weight is subject to l1/l2 regularization
        as all other features.
        To lessen the effect of regularization on synthetic feature weight
        (and therefore on the intercept) intercept_scaling has to be increased.

    class_weight : {dict, 'balanced'}, optional
        Set the parameter C of class i to ``class_weight[i]*C`` for
        SVC. If not given, all classes are supposed to have
        weight one.
        The "balanced" mode uses the values of y to automatically adjust
        weights inversely proportional to class frequencies in the input data
        as ``n_samples / (n_classes * np.bincount(y))``

    verbose : int, (default=0)
        Enable verbose output. Note that this setting takes advantage of a
        per-process runtime setting in liblinear that, if enabled, may not work
        properly in a multithreaded context.

    random_state : int, RandomState instance or None, optional (default=None)
        The seed of the pseudo random number generator to use when shuffling
        the data.  If int, random_state is the seed used by the random number
        generator; If RandomState instance, random_state is the random number
        generator; If None, the random number generator is the RandomState
        instance used by `np.random`.

    max_iter : int, (default=1000)
        The maximum number of iterations to be run.

    Attributes
    ----------
    coef_ : array, shape = [n_features] if n_classes == 2 else [n_classes, n_features]
        Weights assigned to the features (coefficients in the primal
        problem). This is only available in the case of a linear kernel.

        ``coef_`` is a readonly property derived from ``raw_coef_`` that
        follows the internal memory layout of liblinear.

    intercept_ : array, shape = [1] if n_classes == 2 else [n_classes]
        Constants in decision function.

    Examples
    --------
    >>> from sklearn.svm import LinearSVC
    >>> from sklearn.datasets import make_classification
    >>> X, y = make_classification(n_features=4, random_state=0)
    >>> clf = LinearSVC(random_state=0)
    >>> clf.fit(X, y)
    LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True,
         intercept_scaling=1, loss='squared_hinge', max_iter=1000,
         multi_class='ovr', penalty='l2', random_state=0, tol=0.0001,
         verbose=0)
    >>> print(clf.coef_)
    [[ 0.08551385  0.39414796  0.49847831  0.37513797]]
    >>> print(clf.intercept_)
    [ 0.28418066]
    >>> print(clf.predict([[0, 0, 0, 0]]))
    [1]

    Notes
    -----
    The underlying C implementation uses a random number generator to
    select features when fitting the model. It is thus not uncommon
    to have slightly different results for the same input data. If
    that happens, try with a smaller ``tol`` parameter.

    The underlying implementation, liblinear, uses a sparse internal
    representation for the data that will incur a memory copy.

    Predict output may not match that of standalone liblinear in certain
    cases. See :ref:`differences from liblinear <liblinear_differences>`
    in the narrative documentation.

    References
    ----------
    `LIBLINEAR: A Library for Large Linear Classification
    <http://www.csie.ntu.edu.tw/~cjlin/liblinear/>`__

    See also
    --------
    SVC
        Implementation of Support Vector Machine classifier using libsvm:
        the kernel can be non-linear but its SMO algorithm does not
        scale to large number of samples as LinearSVC does.

        Furthermore SVC multi-class mode is implemented using one
        vs one scheme while LinearSVC uses one vs the rest. It is
        possible to implement one vs the rest with SVC by using the
        :class:`sklearn.multiclass.OneVsRestClassifier` wrapper.

        Finally SVC can fit dense data without memory copy if the input
        is C-contiguous. Sparse data will still incur memory copy though.

    sklearn.linear_model.SGDClassifier
        SGDClassifier can optimize the same cost function as LinearSVC
        by adjusting the penalty and loss parameters. In addition it requires
        less memory, allows incremental (online) learning, and implements
        various loss functions and regularization regimes.

    """

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

计算机视觉-Archer

图像分割没有团队的同学可加群

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值