[读论文] Dynamic Neural Networks: A Survey

1 Introduction

Advantages
1) Efficiency
2) Representaion Power
3) Adaptiveness.
4) Compatibility.
5) Generality.
6) Interpretability.

2 SAMPLE-WISE DYNAMIC NETWORKS

2.1 Dynamic Architectures

2.1.1 Dynamic Depth
1) Early Exiting.
a) Cascading of DNNs.
b) Intermediate Classifiers.
c) Multi-Scale Architecture With Early Exits.

MSDNet 1) a multiscale architecture; 2) dense connections
RANet

2) Layer Skipping.
a) Halting score
b) Gating function
c) Policy network

2.1.2 Dynamic Width
1) Skipping Neurons in Fully-Connected (FC) Layers.
2) Skipping Branches in Mixture-of-Experts (MoE).
3) Skipping Channels in CNNs.
a) Multi-Stage Architectures Along the Channel Dimension.
b) Dynamic Pruning With Gating Functions.
c) Dynamic pruning based on feature activations directly


2.1.3 Dynamic Routing
1) Path Selection in Multi-Branch Structures.
2) Neural Trees and Tree-Structured Networks.
a) Soft decision tree (SDT)
b) Neural trees with deterministic routing policies
c) Tree-structured DNNs.
3) Others

2.2 Dynamic Parameters

2.2.1 Parameter Adjustment
1) Attention on Weights.
2) Kernel Shape Adaptation.

2.2.2 Weight Prediction
1) General Architectures.
2) Task-specific information

2.2.3 Dynamic Features
1) Channel-wise attention
2) Spatial-Wise Attention.
3) Dynamic Activation Functions.

3 SPATIAL-WISE DYNAMIC NETWORKS
3.1 Pixel-Level Dynamic Networks
3.1.1 Pixel-Wise Dynamic Architectures
    1) dynamic sparse convolution
    2) additional refinement,

1) Dynamic Sparse Convolution.
2) Dynamic Additional Refinement.

3.1.2 Pixel-Wise Dynamic Parameters
1) Dynamic Weights.
2) Dynamic Reception Fields.

3.2 Region-Level Dynamic Networks

3.2.1 Dynamic Transformations

3.2.2 Hard Attention on Selected Patches
1) Hard Attention With RNNs.
2) Hard Attention With Other Implementations.

3.3 Resolution-Level Dynamic Networks

3.3.1 Adaptive Scaling Ratios
3.3.2 Dynamic Resolution in Multi-Scale Architectures

4 TEMPORAL-WISE DYNAMIC NETWORKS

4.1 RNN-Based Dynamic Text Processing

4.1.1 Dynamic Update of Hidden States
1) Skipping the Update
2) Coarse Update.
3) Selective Updates in Hierarchical RNNs.

4.1.2 Temporally Early Exiting in RNNs

4.1.3 Jumping in Texts

4.2 Temporal-Wise Dynamic Video Recognition
4.2.1 Video Recognition With Dynamic RNNs
1) Dynamic Update of Hidden States.
2) Temporally Early Exiting
3) Jumping in Videos.

4.2.2 Dynamic Key Frame Sampling
1) Temporal attention
2) Sampling module

5 INFERENCE AND TRAINING

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

计算机视觉-Archer

图像分割没有团队的同学可加群

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值