PyTorch笔记6--DataLoader和Dataset

DataLoader和Dataset

torch.utils.data.DataLoader

DataLoader(#构建可迭代的数据装载器
    dataset,#Dataset类,决定数据从哪读取及如何读取
    batch_size=1,#批大小
    shuffle=False,#每个epoch是否乱序
    sampler=None,
    num_workers=0,#是否多进程读取数据
    collate_fn=None,
    pin_memory=False,
    drop_last=False,#当样本数不能被batchsize整除时,是否舍弃最后一批数据
    timeout=0,
    worker_init_fn=None,
    multiprocessing_context=None
)

Epoch:所有训练样本都已输入到模型中,称为一个Epoch

lteration:一批样本输到模型中称之为一个ieration

Batchsize:批大小,决定一个Epoch有多少个Iteration

样本总数:80,Batchsize:8 则1 Epoch = 10 lteration

样本总数:87,Batchsize:8 则

        drop last = True时 1 Epoch =10 lteration

        drop last = False时1 Epoch = 11 lteration

torch.utils.data.Dataset

class Dataset(object):#Dataset抽象类,所有自定义的Dataset需要继承它,并且复写
    def __getitem__(self,index):#接受一个索引,返回一个样本
        raise NotImplementedError
    def __add__(self,other):
        return ConcatDataset([self,other])

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值