torchvision计算机视觉工具包
torchvision.transforms:常用的图像预处理方法(如数据中心化、数据标准化、缩放、裁剪、旋转、翻转、填充、噪声添加、灰度变换、线性变化、仿射变换、亮度饱和度及对比度变换)
torchvision.datasets:常用数据集的dataset实现,MNIST,CIFAR-10,ImageNet等
torchvision.model:常用的模型预训练,AlexNet,VGG,ResNet,GoogLeNet等

比较常用的预处理方法transforms.Normalize
transforms.Normalize(#逐channel的对图像进行标准化,output=(input-mean)/std
mean,#各通道的均值
std,#各通道的标准差
inplace#是否原地操作
)
本文阐述了torchvision库中的关键组件,如图像预处理Normalize,以及它支持的常见数据集(如MNIST、CIFAR-10和ImageNet)和预训练模型(如AlexNet、VGG、ResNet和GoogLeNet)。
1万+

被折叠的 条评论
为什么被折叠?



