题目大意:一本书有N页,编号1到N,其中有M页破损,编号分别为P_1, P_2, … P_M等。有Q个人要读这本书,人i只读编号是R_i倍数且不破损的页。求每人读的页数的总和。
- 1 ≤ M ≤ N ≤ 105.
- 1 ≤ Q ≤ 105.
- 1 ≤ T ≤ 100.
- 1 ≤ P1 < P2 < … < PM ≤ N.
- 1 ≤ Ri ≤ N, for all i.
解法1
首先创建一个数组torn,torn[i] = 1当且仅当页i破损,这样我们能以O(1)时间知道某页是否破损。然后计算每个人能读的页数。对于人i,如果从1到N迭代页号,检查是否可读,总的时间复杂度是O(NQ)。
优化1:只需要迭代R_i的倍数,时间为O(N/R1 + N/R2 + …)
优化2:设f(i)=页号为i的倍数且没破的页数,则人i能读的页数为f(Ri),如果Ri = Rj,那就不需要重复运算。时间O(N/1+N/2+…+N/N) = (NlogN)
#include <iostream>
#include <vector>
using namespace std;
class Solution {
public:
void solve() {
int M, N, Q; // 1e5
cin >> N >> M >> Q; // #page, #torn_page, #reader
vector<int> torn(N+1); // torn[i] = 1, page i破损
for(int i = 0; i < M; i++) {
int x; cin >> x;
torn[x] = 1;
}
vector<int> nums(N+1, -1); // nums[i] 页号为i的倍数且不破损的页的个数,如果-1,说明还没求过
long res = 0;
for(int i = 0; i < Q; i++) {
int x; cin >> x;
if(nums[x] == -1) {
nums[x] = 0;
// 迭代x的倍数
for(int j = x; j <= N; j += x) {
nums[x] += 1 - torn[j];
}
}
res += nums[x];
}
cout << res << endl;
}
};
int main() {
int T;
cin >> T;
auto sln = new Solution();
for (int i = 1; i <= T; i++)
{
cout << "Case #" << i << ": ";
sln->solve();
}
return 0;
}
解法2
比解法1要麻烦,不过也可以通过。
对于Ri,有x = floor(N/Ri)个页是Ri的倍数,令y = 页号是Ri倍数且破损的页数,则结果加上x-y。问题是如何快速得到y?创建一个数组vi,vi[i]表示页号是i倍数且破损的页数。当我们读入所有破损页号时,假设读到x,那么对于x的所有因数i,vi[i]++。至于求因数,我们可以在最开始求出1到105的数的因数。
#include <iostream>
#include <vector>
#include <unordered_map>
#include <unordered_set>
#include <string>
#include <algorithm>
#include <cmath>
using namespace std;
const int MAXN = 100000;
vector<int> fs[MAXN+1]; // fs[i] i的因数集合
class Solution {
public:
void solve() {
int M, N, Q; // 1e5
cin >> N >> M >> Q; // #page, #torn_page, #reader
vector<int> vi(N+1); // vi[i] 页号是i的倍数的破页个数
for(int i = 0; i < M; i++) {
int x;
cin >> x;
for(int j : fs[x]) {
vi[j]++;
}
}
long res = 0; // 注意int会溢出
for(int i = 0; i < Q; i++) {
int x;
cin >> x;
res += (N / x) - vi[x];
}
cout << res << endl;
}
};
int main() {
int T;
cin >> T;
for(int x = 1; x <= MAXN; x++) {
auto& st = fs[x]; // factor set
int y = sqrt(x + 0.5);
for(int i = 1; i < y; i++) {
if(x % i == 0) {
st.push_back(i);
st.push_back(x / i);
}
}
if(x % y == 0) {
st.push_back(y);
if(x / y != y) st.push_back(x / y);
}
}
auto sln = new Solution();
for (int i = 1; i <= T; i++)
{
cout << "Case #" << i << ": ";
sln->solve();
}
return 0;
}