各省分数线及预测

前言

又是一年高考季,时光荏苒,岁月如梭,小编高考已经过了好几年了,每个人对高考都有着不同的感受,但这不是这篇文章的重点。

这次小编得到14-19年各省分数线的数据集,使用 pyecharts 对每个省份往年分数线展示,以及粗略的预测一下今年分数线。

数据来源:

https://zhuanlan.zhihu.com/p/152309115

 数据说明

数据包含地区,年份,考生类别,批次,分数线这五个字段,我们只展示每年文理科的本科一批及本科二批的数据:

各省历年分数

使用 pyecharts 制作的效果先来看一看,这个制作效果是来自:

https://www.kesci.com/home/project/5f03ba09bf776d002d054058

小编借鉴了代码,并给每一行写了注释。

 

代码有点长就不放了,回复关键词获取即可。

预测今年分数

小编根据14-19年各省的分数线分别预测文理科的分数,使用的是灰度模型,结果是很粗略的。

为什么说粗略呢,因为有些省份并不是都有14-19年数据,这样的预测结果误差非常大,有14-19年数据的预测结果误差在10分左右。这是还没考虑疫情,试卷难度等的情况下,把这些因素考虑分数线会比预测值低。

灰度模型,介绍一下:

灰色预测法是一种对含有不确定因素的系统进行预测的方法。

在建立灰色预测模型之前,需先对原始时间序列进行数据处理,经过数据处理后的时间序列即称为生成列。

灰色系统常用的数据处理方式有累加和累减两种。

灰色预测法的通用性比较强些,一般的时间序列场合都可以用,尤其适合那些规律性差且不清楚数据产生机理的情况。

优点:具有预测精度高、模型可检验、参数估计方法简单、对小数据集有很好的预测效果。

缺点:对原始数据序列的光滑度要求很高,在原始数据列光滑性较差的情况下灰色预测模型的预测精度不高甚至通不过检验,结果只能放弃使用灰色模型进行预测。

简单说就是预测一列数据的。

实现的算法代码,也一起放到源码里面了,我们直接调用预测即可:

预测的结果保存为 csv 文件:

 源码获取

关注微信公众号 “木下学Python”,回复 “高考” 即可获取

END

读者交流群已建立,找到我备注 “交流”,即可获得加入我们~

听说点 “在看” 的都变得更好看呐~

-END-

<think>好的,我现在要帮用户解答关于2025年四川单招录取分数线的问题。首先,我需要明确用户的需求。用户可能是一名计划参加2025年四川单招考试的学生,或者是有亲友参加,想要提前了解相关信息,以便做好备考准备或志愿填报的规划。 接下来,我需要考虑四川单招的基本情况。单招,也就是高职院校单独招生,通常由省内的高职高专院校自主组织考试和录取。和普通高考不同,单招的考试时间较早,一般在每年的3-4月份进行,录取结果通常在4月公布。因此,对于2025年的分数线,现在还没有具体的数据,因为分数线通常是在考试结束后,根据当年的考生成绩、招生计划、报考人数等因素综合划定的。 接下来,我需要回忆过去几年的四川单招分数线情况,作为参考。例如,2023年的分数线可能在200分左右,不同学校和专业的分数线差异较大。比如热门专业如医学类、教育类可能要求更高,达到300分以上,而普通专业可能在200-250分之间。但需要注意的是,每年的情况都可能变化,所以这些数据只能作为参考。 然后,我需要分析影响分数线的因素。首先是招生计划,如果某院校扩招,分数线可能会下降;反之则会上升。其次是报考人数,竞争激烈的话分数线可能上涨。还有考试难度,题目难易程度会影响整体分数分布。此外,不同学校的生源质量和热门程度也会导致分数线的差异。 用户可能真正想知道的是如何预估自己需要达到的分数,或者如何制定备考策略。因此,除了提供分数线相关信息外,还应该给出建议。例如,建议用户参考目标院校近三年的录取分数线,了解平均分和波动情况;评估自己的模拟考试成绩,对比往年的数据;关注教育考试院和学校官网的最新通知,及时获取招生计划的变化等。 同时,用户可能有潜在的问题,比如如何选择适合自己的学校和专业,或者单招考试的备考重点是什么。虽然用户没有直接问这些,但可能在了解分数线后会有进一步的需求,因此在回答中可以适当提及这些方面,但不需要展开,保持回答的针对性。 最后,需要确保回答准确可靠,避免给出错误的信息,比如不能肯定地说2025年的分数线会是多少,而是解释为什么现在无法确定,并提供合理的方法来预估和准备。同时,要提醒用户注意官方信息的发布渠道,避免被不实信息误导。</think>关于2025年四川高职单招录取分数线,目前尚未公布(一般需考试结束后才会划定)。但可以通过以下信息帮助您合理预判和准备: --- ### **一、分数线划定的基本逻辑** 1. **非统一标准** 单招分数线由各院校自主划定,不同学校、不同专业差异较大。例如: - 热门院校(如四川建筑职业技术学院、成都航空职业技术学院)的分数线通常高于普通院校 - 医学类、教育类、计算机类热门专业分数线可能比普通专业高$50-100$分 2. **影响因素** - **招生计划**:扩招可能降低分数线,缩招则可能提高 - **报考人数**:竞争激烈程度直接影响分数 - **考试难度**:试题难度影响考生整体成绩分布 --- ### **二、近年分数线参考(以2023年为例)** | 院校类型 | 普通类专业分数线范围 | 热门专业分数线范围 | |----------------|----------------------|-------------------------| | 省级示范高职 | $200-250$分 | $280-320$分(如护理、学前教育) | | 普通高职 | $150-200$分 | $220-260$分(如计算机应用技术)| --- ### **三、2025年分数线预估方法** 1. **纵向对比** 查询目标院校**近3年分数线**,计算平均值并观察波动趋势。例如: $$ \text{预估分} = \frac{2022年分 + 2023年分 + 2024年分}{3} \pm 10\% $$ (需注意政策变化对分数的影响) 2. **横向评估** - 若您当前模拟考成绩稳定在$240$分,可重点参考分数线在$200-260$分的院校 - 若报考人数预计增长$10\%$,建议将目标分数提高$15-20$分 --- ### **四、关键时间节点与建议** 1. **2024年10月**:关注四川省教育考试院发布的《2025年单招政策》 2. **2025年1月**:各院校公布招生简章(含专业计划与考试大纲) 3. **2025年3月**:完成单招报名后,集中冲刺目标院校的**文化素质+职业技能测试**高频考点 --- ### **五、注意事项** 1. **警惕虚假信息**:分数线不会提前公布,任何声称“内部预测分”的渠道均不可信 2. **保底策略**:建议填报1-2所分数线低于自身模拟考成绩$30$分的院校作为保底志愿 如需进一步分析具体院校的录取概率,可提供您的预估成绩区间,我将为您细化推荐报考方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值