simplAR: Augmented reality for OpenCV beginners

simplAR: Augmented reality for OpenCV beginners

Here is a simple AR demo for beginners (-includes me). The program augments only in 2D with a picture or a clip.
The video plays rather slow, it would be great if you could use multiple threads (-which i have no clue what so ever!).


*Update - Download links fixed!
Download the Project folder and the source code [6.62 Mb].


Links:
http://www.bigbuckbunny.org/
If you want to download only the (modified) video used in this demo, try the link below-
BigBuckBunny_Trailer [6.43 Mb]
640x480, Xvid/LameMP3 


Pattern (Size A4,JPEG):

















Videos:

http://www.youtube.com/watch?v=rakZ3b0P5rU&feature=player_embedded



Source Code:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
//______________________________________________________________________________________
// OpenCV Simple Augmented Reality Program
// Author: Bharath Prabhuswamy
//______________________________________________________________________________________
//______________________________________________________________________________________
#include <stdio.h>
#include <stdlib.h>
#include "cv.h"
#include "highgui.h"
 
int main()
{
     CvCapture *capture = 0;
     IplImage  *image = 0;
     IplImage *frame = 0;
     IplImage *disp,*neg_img,*cpy_img;
     int key = 0;
     int fcount = 0;
     int option = 0;
  
     capture = cvCaptureFromCAM( 0 );
  if ( !capture )
         return -1;
 
     //Use a video with aspect ratio 4:3
     CvCapture* vid = cvCreateFileCapture( "trailer.avi" );
     if ( !vid )
        return -1;
 
     IplImage *pic = cvLoadImage( "pic.jpg" );
     cvFlip(pic,pic,1);
  
  int b_width  = 5;
  int b_height = 4;
  int b_squares = 20;
  CvSize b_size = cvSize( b_width, b_height );
  //The pattern actually has 6 x 5 squares, but has 5 x 4 = 20 'ENCLOSED' corners
 
  CvMat* warp_matrix = cvCreateMat(3,3,CV_32FC1);
  CvPoint2D32f* corners = new CvPoint2D32f[ b_squares ];
  int corner_count;
 
  printf ( "Select an option to run the program\n\n" );
  printf ( "1. Show an Image over the pattern.\n" );
  printf ( "2. Play a Clip over the pattern.\n" );
  printf ( "3. Mark the pattern.\n\n" );
  scanf ( "%d" ,&option);
   
  //Quit on invalid entry
  if (!(option>=1 && option<=3))
  {
   printf ( "Invalid selection." );
   return -1;
  }
 
  cvNamedWindow( "Video" ,CV_WINDOW_AUTOSIZE);
 
  while (key!= 'q' )
  {
   image = cvQueryFrame( capture );
   if ( !image ) break ;
   cvFlip(image,image,1);
 
   disp = cvCreateImage( cvGetSize(image), 8, 3 );
   cpy_img = cvCreateImage( cvGetSize(image), 8, 3 );
                 neg_img = cvCreateImage( cvGetSize(image), 8, 3 );
 
   IplImage* gray = cvCreateImage( cvGetSize(image), image->depth, 1);
   int found = cvFindChessboardCorners(image, b_size, corners, &corner_count,        
                                     CV_CALIB_CB_ADAPTIVE_THRESH | CV_CALIB_CB_FILTER_QUADS);
 
   cvCvtColor(image, gray, CV_BGR2GRAY);
   
   //This function identifies the pattern from the gray image, saves the valid group of corners
   cvFindCornerSubPix(gray, corners, corner_count,  cvSize(11,11),cvSize(-1,-1),    
                                     cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 30, 0.1 ));
    
   if ( corner_count == b_squares )
          {
    if (option == 1)
    {
     CvPoint2D32f p[4];
     CvPoint2D32f q[4];
 
     IplImage* blank  = cvCreateImage( cvGetSize(pic), 8, 3);
     cvZero(blank);
     cvNot(blank,blank);
     
     //Set of source points to calculate Perspective matrix
     q[0].x= ( float ) pic->width * 0;
     q[0].y= ( float ) pic->height * 0;
     q[1].x= ( float ) pic->width;
     q[1].y= ( float ) pic->height * 0;
 
     q[2].x= ( float ) pic->width;
     q[2].y= ( float ) pic->height;
     q[3].x= ( float ) pic->width * 0;
     q[3].y= ( float ) pic->height;
   
     //Set of destination points to calculate Perspective matrix
     p[0].x= corners[0].x;
     p[0].y= corners[0].y;
     p[1].x= corners[4].x;
     p[1].y= corners[4].y;
     
     p[2].x= corners[19].x;
     p[2].y= corners[19].y;
     p[3].x= corners[15].x;
     p[3].y= corners[15].y;
     
     //Calculate Perspective matrix
     cvGetPerspectiveTransform(q,p,warp_matrix);
 
     //Boolean juggle to obtain 2D-Augmentation
     cvZero(neg_img);
     cvZero(cpy_img);
 
     cvWarpPerspective( pic, neg_img, warp_matrix);
     cvWarpPerspective( blank, cpy_img, warp_matrix);
     cvNot(cpy_img,cpy_img);
 
     cvAnd(cpy_img,image,cpy_img);
     cvOr(cpy_img,neg_img,image);
 
     cvShowImage( "Video" , image);
    }
    else if (option == 2)
    {
     CvPoint2D32f p[4];
     CvPoint2D32f q[4];
 
     frame = cvQueryFrame(vid);
     if (!frame)
     printf ( "error frame" );
 
     IplImage* blank  = cvCreateImage( cvGetSize(frame), 8, 3);
     cvZero(blank);
     cvNot(blank,blank);
 
     q[0].x= ( float ) frame->width * 0;
     q[0].y= ( float ) frame->height * 0;
     q[1].x= ( float ) frame->width;
     q[1].y= ( float ) frame->height * 0;
 
     q[2].x= ( float ) frame->width;
     q[2].y= ( float ) frame->height;
     q[3].x= ( float ) frame->width * 0;
     q[3].y= ( float ) frame->height;
   
     p[0].x= corners[0].x;
     p[0].y= corners[0].y;
     p[1].x= corners[4].x;
     p[1].y= corners[4].y;
     
     p[2].x= corners[19].x;
     p[2].y= corners[19].y;
     p[3].x= corners[15].x;
     p[3].y= corners[15].y;
     
     cvGetPerspectiveTransform(q,p,warp_matrix);
 
     //Boolean juggle to obtain 2D-Augmentation
     cvZero(neg_img);
     cvZero(cpy_img);
 
     cvWarpPerspective( frame, neg_img, warp_matrix);
     cvWarpPerspective( blank, cpy_img, warp_matrix);
     cvNot(cpy_img,cpy_img);
 
     cvAnd(cpy_img,image,cpy_img);
     cvOr(cpy_img,neg_img,image);
 
     cvShowImage( "Video" , image);
    }
    else
    {
     CvPoint p[4];
 
     p[0].x=( int )corners[0].x;
     p[0].y=( int )corners[0].y;
     p[1].x=( int )corners[4].x;
     p[1].y=( int )corners[4].y;
     
     p[2].x=( int )corners[19].x;
     p[2].y=( int )corners[19].y;
     p[3].x=( int )corners[15].x;
     p[3].y=( int )corners[15].y;
     
     cvLine( image, p[0], p[1], CV_RGB(255,0,0),2);
     cvLine( image, p[1], p[2], CV_RGB(0,255,0),2);
     cvLine( image, p[2], p[3], CV_RGB(0,0,255),2);
     cvLine( image, p[3], p[0], CV_RGB(255,255,0),2);
 
     //or simply
     //cvDrawChessboardCorners(image, b_size, corners, corner_count, found);
     
     cvShowImage( "Video" , image);
    }
   }
   else
   {
    //Show gray image when pattern is not detected
    cvFlip(gray,gray);
    cvShowImage( "Video" , gray );
 
   }
   key = cvWaitKey(1);
   
  }
 
     cvDestroyWindow( "Video" );
     cvReleaseCapture( &vid );
     cvReleaseMat(&warp_matrix);
     cvReleaseCapture( &capture );
 
     return 0;
}


转载自:http://dsynflo.blogspot.com/2010/06/simplar-augmented-reality-for-opencv.html



【资源介绍】 1、该资源包括项目的全部源码,下载可以直接使用! 2、本项目适合作为计算机、数学、电子信息等专业的课程设计、期末大作业和毕设项目,也可以作为小白实战演练和初期项目立项演示的重要参考借鉴资料。 3、本资源作为“学习资料”如果需要实现其他功能,需要能看懂代码,并且热爱钻研和多多调试实践。 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值