范式理解(0范式,1范式,2范式)

https://www.zhihu.com/question/20473040
可以从函数、几何与矩阵的角度去理解范数。

我们都知道,函数与几何图形往往是有对应关系的,这个很好想象,特别是在三维以下的空间内,函数是几何图像的数学概括,而几何图像是函数的高度形象化,比如一个函数对应几何空间上若干点组成的图形。
但当函数与几何超出三维空间时,就难以获得较好的想象,于是就有了映射的概念,映射表达的就是一个集合通过某种关系转为另外一个集合。通常数学书是先说映射,然后再讨论函数,这是因为函数是映射的一个特例。
为了更好的在数学上表达这种映射关系,(这里特指线性关系)于是就引进了矩阵。这里的矩阵就是表征上述空间映射的线性关系。而通过向量来表示上述映射中所说的这个集合,而我们通常所说的基,就是这个集合的最一般关系。于是,我们可以这样理解,一个集合(向量),通过一种映射关系(矩阵),得到另外一个集合(另外一个向量)。
那么向量的范数表示这个原有集合的大小
矩阵的范数表示这个变化过程的大小的一个度量
简单的说就是:

0范数,向量中非零元素的个数。
1范数,为绝对值之和。
2范数,就是通常意义上的模。

向量范数

在这里插入图片描述

矩阵范数

在这里插入图片描述

  • 14
    点赞
  • 39
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
L范数归一化和L2范数归一化是常见的向量归一化方法,它们在计算方式和效果上有一些区别和特点。 1. 计算方式: - L1范数归一化:对向量中的每个元素取绝对值之后求和,然后将每个元素除以该求和结果。公式为:归一化后的向量 = 原向量 / L1范数。 - L2范数归一化:对向量中的每个元素平方求和,然后将每个元素除以该求和结果的平方根。公式为:归一化后的向量 = 原向量 / L2范数。 2. 效果比较: - L1范数归一化:会使得向量中每个元素的绝对值之和为1。这种归一化方式适用于稀疏向量,即大部分元素接近0的情况。它可以保留原始向量中的零元素,并且对异常值不敏感。 - L2范数归一化:会使得向量的欧氏距离为1,即长度为1。这种归一化方式适用于稠密向量,即绝大部分元素都有较大的非零值的情况。它可以保留原始向量中的相对大小关系,并且对异常值相对敏感。 3. 应用场景: - L1范数归一化:常用于特征选择和稀疏表示。在文本分类、图像处理等领域,L1范数归一化可以使得特征权重稀疏化,减少无关特征的影响。 - L2范数归一化:常用于特征缩放和正则化。在机器学习算法中,L2范数归一化可以使得特征具有相同的尺度,避免某些特征对模型的影响过大。 总的来说,L1范数归一化适用于稀疏向量和特征选择,而L2范数归一化适用于稠密向量和特征缩放。选择哪种归一化方式要根据具体的数据特点和应用场景来决定。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值