对于输入的N,K的值,利用动态规划计算出所有的情况,然后输出dp[N][N/2][0]即可。dp[i][j][k]代表的是目前已经考虑了i位,并且这i位上面有j个1,同时对应的二进制数模K的余数是k。所以我们就可以列举出状态转移方程
dp[i+1][j][k]+=dp[i][j][k],表示的是添加到第i+1位的为0,dp[i+1][j+1][(k+(1<<i))%K]+=dp[i][j][k],表示添加到第i+1位的为1,同时要注意没有前导0以及输入的时候N的位数可能为奇数以及K可能为0的情况,具体实现见如下代码:
#include<iostream>
#include<vector>
#include<string>
#include<set>
#include<stack>
#include<queue>
#include<map>
#include<algorithm>
#include<cmath>
#include<iomanip>
#include<cstring>
#include<sstream>
#include<cstdio>
#include<deque>
#include<functional>
using namespace std;
typedef long long LL;
LL dp[70][70][110];
LL power(int base,int m,int MOD){
if (m == 0) return 1%MOD;
LL ans = power(base,m/2,MOD);
ans = ans*ans%MOD;
if (m % 2){
ans = ans*base%MOD;
}
return ans;
}
int main(){
int Case;
cin >> Case;
for (int t = 1; t <= Case; t++){
LL N, K;
cin >> N >> K;
if (N % 2 || K == 0){
cout <<"Case "<<t<<": 0\n";
continue;
}
memset(dp, 0, sizeof(dp));
dp[0][0][0] = 1;
for (int i = 0; i < N; i++){
for (int j = 0; j <= i; j++){
for (int k = 0; k < K; k++){
if (i != N - 1) dp[i + 1][j][k] += dp[i][j][k];
LL temp = power(2, i, K);
LL k2 = (k + temp) % K;
dp[i + 1][j + 1][k2] += dp[i][j][k];
}
}
}
cout <<"Case "<<t<<": "<< dp[N][N/2][0] << endl;
}
return 0;
}