Zeros and Ones UVA - 12063

对于输入的N,K的值,利用动态规划计算出所有的情况,然后输出dp[N][N/2][0]即可。dp[i][j][k]代表的是目前已经考虑了i位,并且这i位上面有j个1,同时对应的二进制数模K的余数是k。所以我们就可以列举出状态转移方程

dp[i+1][j][k]+=dp[i][j][k],表示的是添加到第i+1位的为0,dp[i+1][j+1][(k+(1<<i))%K]+=dp[i][j][k],表示添加到第i+1位的为1,同时要注意没有前导0以及输入的时候N的位数可能为奇数以及K可能为0的情况,具体实现见如下代码:

#include<iostream>
#include<vector>
#include<string>
#include<set>
#include<stack>
#include<queue>
#include<map>
#include<algorithm>
#include<cmath>
#include<iomanip>
#include<cstring>
#include<sstream>
#include<cstdio>
#include<deque>
#include<functional>
using namespace std;

typedef long long LL;
LL dp[70][70][110];

LL power(int base,int m,int MOD){
	if (m == 0) return 1%MOD;
	LL ans = power(base,m/2,MOD);
	ans = ans*ans%MOD;
	if (m % 2){
		ans = ans*base%MOD;
	}
	return ans;
}

int main(){
	int Case;
	cin >> Case;
	for (int t = 1; t <= Case; t++){
		LL N, K;
		cin >> N >> K;
		if (N % 2 || K == 0){
			cout <<"Case "<<t<<": 0\n";
			continue;
		}
		memset(dp, 0, sizeof(dp));
		dp[0][0][0] = 1;
		for (int i = 0; i < N; i++){
			for (int j = 0; j <= i; j++){
				for (int k = 0; k < K; k++){
					if (i != N - 1) dp[i + 1][j][k] += dp[i][j][k];
					LL temp = power(2, i, K);
					LL k2 = (k + temp) % K;
					dp[i + 1][j + 1][k2] += dp[i][j][k];
				}
			}
		}
		cout <<"Case "<<t<<": "<< dp[N][N/2][0] << endl;
	}
	return 0; 
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值