PAT 1013. Battle Over Cities

</pre></h1><h1 style="margin:0px 0px 0.5em; padding:0px; border:0px; font-family:'Droid Sans',Verdana,'Microsoft YaHei',Tahoma,sans-serif; font-size:3em; font-weight:normal; line-height:1em; vertical-align:baseline; color:rgb(17,17,17); background-color:rgb(250,250,250)"><pre style="margin-top:1.5em; margin-bottom:1.5em; padding:0px; border:0px; font-family:'Droid Sans Mono',Consolas,'Courier New',monospace; vertical-align:baseline; overflow:auto"><span style="font-size:18px"><span style="line-height:27px"></span></span><pre code_snippet_id="1914188" snippet_file_name="blog_20161006_2_3434556" name="code" class="java"><pre code_snippet_id="1914188" snippet_file_name="blog_20161006_1_4371864" name="code" class="java" style="color: rgb(17, 17, 17); font-size: 36px; line-height: 36px;">题目的意思就是求有多少个联通分量,首先想到的是用DFS,于是用Java写了一下:

 


package p1013;

import java.util.Scanner;

/*
 * 可以更优化
 */
public class Copy_2_of_Main {
	
	static boolean[] marked;
	static int[] cc;
	static String[] connected;
	static int N;
	static Scanner sc;
	
	public static void main(String[] args) {
		sc = new Scanner(System.in);
		
		N = sc.nextInt();
		int M = sc.nextInt();
		int Q = sc.nextInt();
		
		//marked = new boolean[1+N];
		cc = new int[1+N];
		connected = new String[1+N];
		
		for(int i=0; i<M; i++) {
			int s = sc.nextInt();
			int t = sc.nextInt();
			if(connected[s] == null)
				connected[s] = String.valueOf(t);
			else
				connected[s] += String.valueOf(t);
			//connected[t][s] = true;
		}
		
		for(int i=0; i<Q; i++) {
			System.out.println(CC());
		}
		
	}

	private static int CC() {
		marked = new boolean[1+N];
		marked[sc.nextInt()] = true;
		int cnt = 0;
		for(int i=1; i<=N; i++) {
			if(!marked[i]) {
				dfs(i);
				cnt ++;
			}
		}
		return cnt - 1;
	}

	private static void dfs(int start) {
		marked[start] = true;
		for(int i=1; i<=N; i++) {
			if(!marked[i] && (connected[start] != null || connected[i] != null)) {
				if(connected[start].indexOf(i+"") != -1 || connected[i].indexOf(start+"") != -1)
					dfs(i);
			}
		}
	}

}
 

然而最后一个用例超时了,考虑到每次查一次都要DFS遍历整个图,其中很多都是重复的,所以改进了一下:
package p1013;

import java.util.Scanner;

/*
 * 可以更优化
 */
public class Main {
	
	static boolean[] marked;
	static int[] cc;
	static boolean[][] connected;
	static int N;
	static int s, sid;
	static int cnt = 0;
	
	public static void main(String[] args) {
		Scanner sc = new Scanner(System.in);
		
		N = sc.nextInt();
		int M = sc.nextInt();
		int Q = sc.nextInt();
		
		//marked = new boolean[1+N];
		cc = new int[1+N];
		connected = new boolean[1+N][1+N];
		
		for(int i=0; i<M; i++) {
			int s = sc.nextInt();
			int t = sc.nextInt();
			connected[s][t] = true;
			connected[t][s] = true;
		}
		
		int all = CC();
		for(int i=0; i<Q; i++) {
			s = sc.nextInt();
			sid = cc[s];
			System.out.println(all - 2 + CC2());
		}
		
	}

	private static int CC2() {
		cnt = 0;
		marked = new boolean[1+N];
		for(int i=1; i<=N; i++) {
			if(i != s && cc[i] == sid && !marked[i]) {
				dfs2(i);
				cnt ++;
			}
		}
		return cnt;
	}

	private static void dfs2(int start) {
		marked[start] = true;
		for(int i=1; i<=N; i++) {
			if(i != s && cc[i] == sid && !marked[i] && connected[start][i]) {
				dfs(i);
			}
		}
	}

	private static int CC() {
		cnt = 0;
		marked = new boolean[1+N];
		for(int i=1; i<=N; i++) {
			if(!marked[i]) {
				dfs(i);
				cnt ++;
			}
		}
		return cnt;
	}

	private static void dfs(int start) {
		marked[start] = true;
		cc[start] = cnt;
		for(int i=1; i<=N; i++) {
			if(!marked[i] && connected[start][i]) {
				dfs(i);
			}
		}
	}

}

然而还是最后一个用例不通过,然后想到可能是Java运行本来就慢,于是换C++,艰难的照着网上的答案和自己的算法思路一样的敲了一遍,全部AC,而且时间比Java不是一般的少(最后一个用例也是特别变态):
#include <iostream>
#include <cstdio>
#include <cstring>

using namespace std;

#define MAX 1000

// 会初始化?
int n, m, k;
bool marked[MAX];
bool connected[MAX][MAX];

void dfs(int t) {
    marked[t] = true;
    for(int i=1; i<=n; i++) {
        if(!marked[i] && connected[t][i]) {
            dfs(i);
        }
    }
}

int main()
{
    scanf("%d%d%d", &n, &m, &k);
    int a, b;
    for(int i=0; i<m; i++) {
        scanf("%d%d", &a, &b);
        connected[a][b] = true;
        connected[b][a] = true;
    }

    int c;
    while(k --) {
        int count = 0;
        scanf("%d", &c);
        memset(marked, false, sizeof(marked));
        marked[c] = true;
        for(int i=1; i<=n; i++){
            if(!marked[i]) {
                dfs(i);
                count++;
            }
        }
        printf("%d\n", count-1);
    }

    return 0;
}

测试点

测试点结果用时(ms)内存(kB)得分/满分
0答案正确33847/7
1答案正确42568/8
2答案正确52443/3
3答案正确514083/3
4答案正确13714084/4
Java的什么Scanner啊这些好像都比scanf慢多了。。。。

网上说还有一种并查集的解法,到时候再试一下,现在是在是无力吐槽这个PAT了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值