西瓜书-支持向量机

支持向量机(SVM)是一种机器学习方法,核心思想是通过最大化间隔来构建决策边界。它涉及对偶问题、拉格朗日乘子法和SMO算法来寻找最优解。特征空间映射允许在高维空间中处理样本,而核函数则避免了直接计算高维内积的复杂性。SVM在处理分类问题时,通过设置松弛变量ξ来处理违反间隔的样本。其应用场景包括数据分类和预测,尤其适用于小样本和高维数据。
摘要由CSDN通过智能技术生成

支持向量机

支持向量:距离超平面最近的这几个训练样本点。
在这里插入图片描述
在这里插入图片描述
支持向量机的核心思想是最大化间隔 γ = 2 ∣ ∣ w ∣ ∣ \gamma = \frac{2}{||w||} γ=∣∣w∣∣2
求极大转换为求极小,转化为凸规划问题。
在这里插入图片描述

对偶问题

利用拉格朗日乘子法,对于不等式约束,在其前加入一个乘子 α i ≥ 0 \alpha_i \ge 0 αi0

支持向量机对偶问题得到的目标函数最优值是原始问题目标函数最优值的下界在这里插入图片描述KKT条件说明,要么 α i = 0 \alpha_i = 0 αi=0要么 y i f ˙ ( x i ) = 1 y_i \dot f(x_i)=1 yif˙(xi)=1。前者说明该点不会出现在解集内,即不符合约束;后者说明该点一定在支持向量上。因此,最终模型仅与支持向量有关。
在这里插入图片描述

求解方法—SMO

顺序性最小优化算法(sequential minimal optimization

  • 基本思路:按照KKT条件违背程度最大准则选取变量,固定一对变量 α i \alpha_i αi α j \alpha_j αj,对偶问题的约束为 0 = ∑ i = 1 m α i y i 0=\sum_{i=1}^{m} \alpha_i y_i 0=i=1mαiyi, 那么这对变量的和就固定了。接着用一个变量表示另一个变量,带入对偶问题的目标函数,求得闭式解。
  • 循环重复1、2步骤,直至目标函数收敛。
    在这里插入图片描述

特征空间映射

在这里插入图片描述
将样本空间映射为高维空间(这个高维可以是无穷维),即将x映射为 ϕ ( x ) \phi (x) ϕ(x)
在这里插入图片描述
此时内积可以用核函数表示,能绕过显式考虑特征映射,直接在原始的特征空间计算,缓解计算高维内积的困难。
在这里插入图片描述

核函数

Mercer定理可以从点到点的距离数学表达理解。由于核函数的初衷是表示空间中两点的距离,因此对于对称核矩阵有:

KiKj
Ki(Ki,Ki)(Ki,Kj)
Kj(Kj,Ki)(Kj,Kj)

若对称轴上每一项均大于等于0,那么Ki和Kj两点之间的距离大于等于0.
在这里插入图片描述
d i s t ( x 1 , x 2 ) = ∥ ϕ ( x 1 ) − ϕ ( x 2 ) ∥ H k 2 = k ( x 1 , x 1 ) − 2 k ( x 1 , x 2 ) + k ( x 2 , x 2 ) dist(x_1,x_2)=\|\phi(x_1)-\phi(x_2)\|_{\mathcal{H}_k}^2=\sqrt{k(x_1,x_1)-2k(x_1,x_2)+k(x_2,x_2)} dist(x1,x2)=ϕ(x1)ϕ(x2)Hk2=k(x1,x1)2k(x1,x2)+k(x2,x2)

对于两个样本点(0,0),(1,1),若我们将其投影到与高斯核函数在这里插入图片描述
关联的RKHS中时,则两个样本投影后的点距离为1.315

如何使用SVM

落在 2 ϵ 2\epsilon 2ϵ内不做惩罚,落在 2 ϵ 2\epsilon 2ϵ外部做惩罚;当样本距离超平面的距离大于一定程度时,有损失且损失随着距离线性增加;同时令所有损失加和最小。
在这里插入图片描述
在这里插入图片描述
间隔带两侧的松弛程度可有所不同,因此分别设定一个 ξ \xi ξ值。之后的计算同样使用拉格朗日乘子法即可。
在这里插入图片描述

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值