Description
Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white.
Consider a set consisting of k(0 ≤ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices.
Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7).
Input
The first line contains an integer n (2 ≤ n ≤ 105) — the number of tree vertices.
The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≤ pi ≤ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1.
The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white.
Output
Output a single integer — the number of ways to split the tree modulo 1000000007 (109 + 7).
Sample Input
3 0 0 0 1 1
2
6 0 1 1 0 4 1 1 0 0 1 0
1
10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1
27
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cmath>
#include<cstdlib>
#include<stack>
#include <queue>
#include <set>
#include <map>
using namespace std;
const int inf = 2147483647;
const double PI = acos(-1.0);
const double e = 2.718281828459;
const int mod = 1000000007;
typedef long long LL;
#pragma comment(linker, "/STACK:102400000,102400000")
//freopen("in.txt","r",stdin); //输入重定向,输入数据将从in.txt文件中读取
//freopen("out.txt","w",stdout); //输出重定向,输出数据将保存在out.txt文件中cin
const int N = 100005;
LL dp[N][2];//0 表示没有黑色节点的个数, 1表示已经有1个黑色的个数
int color[N];
vector<int>son[N];
void dp_dfs(int n, int fa)
{
if (color[n])
dp[n][1] = 1;
else
dp[n][0] = 1;
for (int i = 0; i < son[n].size(); ++i)
{
if (son[n][i] != fa)
{
dp_dfs(son[n][i], n);
dp[n][1] = ((dp[son[n][i]][0] + dp[son[n][i]][1]) * dp[n][1] % mod + dp[n][0] * dp[son[n][i]][1]) % mod;
dp[n][0] = (dp[son[n][i]][0] + dp[son[n][i]][1]) * dp[n][0] % mod;
}
}
}
int main()
{
int n, i, j, p;
while(cin >> n)
{
memset(dp, 0, sizeof(dp));
for (i = 0; i < n; ++i)
son[i].clear();
for (i = 1; i < n; ++i)
{
scanf("%d", &p);
son[p].push_back(i);
son[i].push_back(p);
}
for (i = 0; i < n; ++i)
{
scanf("%d", &color[i]);
/*if (color[i] == 0)
dp[i][1] = 1;*/
}
dp_dfs(0, -1);
printf("%lld\n", dp[0][1]);
}
}