转载-二分查找(附感悟)

本文详细介绍了二分查找算法的核心思想、循环不变量的概念及其在不同变体(如查找最小/最大值、刚好小于/大于指定值的元素下标)中的应用。通过实例分析了循环不变量在确保算法正确性和避免死循环方面的作用,并提供了优化代码的注意事项。
摘要由CSDN通过智能技术生成

二分查找是我们很多人初次接触的算法之一。思想可以说非常简单,但是实际上写起来会有很多问题,出现死循环、找不到解等。这里根据这几天对网上找到资料,写写自己的感悟和技巧。

网上有许多人利用循环不变量条件来写二分查找及其变体。并且证明了代码的正确性。下面来说说循环不变量。

循环不变量

循环不变量包括三个部分——初始、保持、终止。类似于数学归纳法,我们保证代码在初始时的正确性,然后证明保持的正确性,在代码终止时,仍然是正确的,那么就可以保证算法整个运行过程的正确性。

例如:

           二分查找值为key的下标,如果不存在返回-1。
循环不变式:
如果key存在于原始数组[0,n-1],那么它一定在[left,right]中。
初始化:
第一轮循环开始之前,处理的数组就是原始数组,这时显然成立。
保持:
每次循环开始前,key存在于待处理数组array[left, ..., right]中。
对于array[mid]<key,array[left, ..., mid]均小于key,key只可能存在于array[mid+1, ..., right]中;
对于array[mid]>key,array[mid, ..., right]均大于key,key只可能存在于array[left, ..., mid-1]中;
对于array[mid]==key,查找到了key对应的下标,直接返回。
在前两种情况中,数组长度每次至少减少1(实际减少的长度分别是mid-left+1和right-mid+1),直到由1(left==right)变为0(left>right),不会发生死循环。
终止:
结束时,left>right,待处理数组为空,表示key不存在于所有步骤的待处理数组,再结合每一步排除的部分数组中也不可能有key,因此key不存在于原数组。
/* binsearch 寻找key下标,不存在 return -1 */

/* binsearch 注意点【找不到 vs 死循环】
 * 1. left <= right 如改为 left < right 可能找不到key
 *    例如 1 2 3 4 5;key=5; left==right时候才搜到key
 * 2. left = mid + 1;
 *    如上left改为=mid,可能死循环,例如上面例子,
 *    当left指向4时候,right指向5,此时,死循环;
 *    死循环的根本原因在于left,当两个指针left与right相邻
 *    left可能永远等于mid,而right不会因为等于mid死循环
 */
int binsearch(int * arr, int lef, int rig, int key)
{
    if(!arr)    return -1;
    int left = lef, right = rig;
    while(left <= right)
    {
        int mid = left + ((right-left)>>1);
        if(arr[mid] < key)
        {
            left = mid + 1;
        }else if(arr[mid] > key)
        {
            right = mid - 1;
        }else
            return mid;
    }
    return -1;
}

/* binsearch_min 返回key(可能有重复)第一次出现的下标,如无return -1
 *
 * binsearch_min 注意点【死循环】
 * 1. 如果while(left < right)改为(left <= right)可能死循环;
 * 2. 循环结束条件,left == right
 *
 * 该代码我测试了很多用例,没发现反例,我认为是对的
 * 但网上都是用的left<right-1的条件并分别对arr[left]和arr[right]
 * 进行检查;我认为我写的更简练,希望有兴趣的读者帮忙review这段代码
 * 如发现反例指出错误,感激不尽,嘿
 */
int binsearch_min(int * arr, int lef, int rig, int key)
{
    if(!arr)    return -1;
    int left = lef, right = rig;
    while(left < right)
    {
        int mid = left + ((right-left)>>1);
        if(arr[mid] < key)
        {
            left = mid+1;
        }else
        {
            right = mid;
        }
    }
    if(arr[left] == key)    return left;
    return -1;
}

/* binsearch_max 返回key(可能有重复)最后一次出现的下标,如无return -1
 *
 * binsearch_max 注意点【死循环 vs 越过目标位置】
 * 1. 如果改为while(left < right)可能死循环;
 * 2. 如果left=mid改为left=mid+1;则有可能越过目标位置
 * 3. 循环结束条件,left == right || left == right -1
 *
 * 如非要死记:找最大的等号放<=key的位置,找最小的等号放>=key位置
 */
int binsearch_max(int * arr, int lef, int rig, int key)
{
    if(!arr)    return -1;
    int left = lef, right = rig;
    while(left < right -1)
    {
        int mid = left + ((right-left)>>1);
        if(arr[mid] <= key)
        {
            left = mid;
        }else
        {
            right = mid;
        }
    }
    if(arr[right] == key) // 找max,先判断right
    {
        return right;
    }else if(arr[left] == key)
    {
        return left;
    }else
        return -1;
}

/* binsearch_justsmall 返回刚好小于key的元素下标,如无return -1
 *
 * binsearch_justsmall 注意点【死循环 vs 越过目标位置】
 * 1. 如果改为while(left < right)可能死循环;因为left=mid的缘故
 * 2. 如果left=mid改为left=mid+1;则有可能越过目标位置
 * 3. 循环结束条件,left == right || left == right -1
 */
int binsearch_justsmall(int * arr, int lef, int rig, int key)
{
    if(!arr)    return -1;
    int left = lef, right = rig;
    while(left < right - 1)
    {
        int mid = left + ((right-left)>>1);
        if(arr[mid] < key)
        {
            left = mid;
        }else
        {
            right = mid - 1;
        }
    }
    if(arr[right] < key) // 找刚好小于,先判断right
    {
        return right;
    }else if(arr[left] < key)
    {
        return left;
    }else
        return -1;
}

/* binsearch_justgreat 返回刚好大于key的元素下标,如无return -1
 *
 * binsearch_justgreat 注意点【死循环 vs 检查元素是否大于key】
 * 1. 如果改为while(left <= right)可能死循环;因为right = mid;
 * 2. 最后注意检查arr[right]是否大于key
 * 3. 循环结束条件,left == right
 */
int binsearch_justgreat(int * arr, int lef, int rig, int key)
{
    if(!arr)    return -1;
    int left = lef, right = rig;
    while(left < right)
    {
        int mid = left + ((right-left)>>1);
        if(arr[mid] <= key)
        {
            left = mid + 1;
        }else
        {
            right = mid;
        }
    }
    if(arr[right] > key) return right;
    return -1;
}

参考资料

http://www.cr173.com/html/20428_1.html
http://www.ahathinking.com/archives/179.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值