红黑树原理(图解+java代码)

1 原理

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2 java代码实现红黑树

2.1 RBTree.java

package com.ge.es.hcapmelsservice.service;

/**
 * @author zhaokai
 * @create 2021-01-25-16:50
 * 1.创建RBTree.定义颜色
 * 2.创建RBNode
 * 3.辅助方法定义:parentOf(node). isRed(node). isBlack(node), setRed(node). setBlack(node). inOrderPrint()
 * 4.左旋方法定义:leftRotate(node)
 * 5.右旋方法定义:rightRotate(node)
 * 6.公开插入接口方法定义:insert(K key, V value);
 * 7.内部插入接口方法定义:insert(RBNode node);
 * 8.修正插入导致红黑树失衡的方法定义:insertFIxUp(RBNode node);
 * 9.测试红黑树正确性
 */
public class RBTree<K extends Comparable<K>,V> {
    private static final boolean RED = true;
    private static final boolean BLACK = false;

    /**树根的引用*/
    private RBNode root;

    public RBNode getRoot() {
        return root;
    }

    /**
     * 获取当前节点的父节点
     * @param node
     */
    private RBNode parentOf(RBNode node){
        if(node != null){
            return node.parent;
        }
        return null;
    }

    /**
     * 节点是否为红色
     * @param node
     */
    private boolean isRed(RBNode node){
        if(node != null){
            return node.color == RED;
        }
        return false;
    }

    /**
     * 设置节点为红色
     * @param node
     */
    private void setRed(RBNode node){
        if(node != null){
            node.color = RED;
        }
    }

    /**
     * 节点是否为黑色
     * @param node
     */
    private boolean isBlack(RBNode node){
        if(node != null){
            return node.color == BLACK;
        }
        return false;
    }

    /**
     * 设置节点为黑色
     * @param node
     */
    private void setBlack(RBNode node){
        if(node != null){
            node.color = BLACK;
        }
    }

    /**
     * 中序打印二叉树
     */
    public void inOrderPrint(){
        inOrderPrint(this.root);
    }

    private void inOrderPrint(RBNode node){
        if(root != null){
            inOrderPrint(node.left);
            System.out.println("key:" + node.key +",value:" + node.value);
            inOrderPrint(node.right);
        }
    }

    /**
     * 公用的插入方法
     * @param key
     * @param value
     */
    public void insert(K key,V value){
        RBNode node = new RBNode();
        node.setKey(key);
        node.setValue(value);
        //新节点 一定是红色
        node.setColor(RED);
        insert(node);

    }
    private void insert(RBNode node){
        //第一步:查找当前node的父节点
        RBNode parent = null;
        RBNode x = this.root;
        while(x != null){
            parent = x;
            //cmp>0说明node.key 大于x.key 需要到x的右子树查找
            //cmp==0说明node.key 等于x.key 需要进行替换操作
            //cmp<0说明node.key 小于 x.key 需要到x的左子树查找
            int cmp = node.key.compareTo(x.key);
            if(cmp > 0){
                x=x.right;
            }else if(cmp == 0){
                x.setValue(node.getValue());
                return;
            }else{
                x=x.left;
            }
        }
        node.parent = parent;
        if(parent != null){
            //判断node与parent 的key 谁大
            int cmp = node.key.compareTo(parent.key);
            if(cmp > 0){//当前node的key比parent的key大,需要把node放入parent的右子节点
                parent.right = node;
            }else{//当前node的key比parent的key小,需要把node放入parent的左子节点
                parent.left = node;
            }
        }else{
            this.root = node;
        }
        //需要调用修复红黑树平衡的方法
        insertFixUp(node);
    }

    /**
     * 插入后修复红黑树平衡的方法
     *     |---情景1:红黑树为空树。将根节点染色为黑色
     *     |---情景2:插入节点的key已经存在。不需要处理
     *     |---情景3:插入节点的父节点为黑色。因为插入的路径。黑色节点没有变化,所以红黑树依然平衡,所以不需要处理
     *
     *     情景4 需要咱们去处理
     *     |---情景4:插入节点的父节点为红色
     *           |---情景4.1:叔叔节点存在,并且为红色(父-叔 双红)。将爸爸和叔叔染色为黑色,将爷爷染色为红色。并且再以爷爷节点为当前节点,进行下一轮处理
     *           |---情景4.2:叔叔节点不存在,或者为黑色,父节点为爷爷节点的左子树
     *                 |---情景4.2.1:插入节点为其父节点的左子节点(LL情况)。将爸爸染色为黑色,将爷爷染色为红色,然后以爷爷节点右旋就完成了
     *                 |---情景4.2.2:插入节点为其父节点的右子节点(LR情况)。以爸爸节点进行一次左旋。得到LL双红的情景(4.2.1),然后指定爸爸节点为当前节点进行下一轮处理
     *           |---情景4.3:叔叔节点不存在,或者为黑色,父节点为爷爷节点的右子树
     *                 |---情景4.3.1:插入节点为其父节点的右子节点(RR情况)。将爸爸染色为黑色。将爷爷染色为红色。将爷爷左旋,就完成了
     *                 |---情景4.3.2:插入节点为其父节点的左子节点(RL情况)。以爸爸节点进行一次右旋,得到RR双红的情景(4.3.1),然后指定爸爸节点为当前节点进行下一轮处理
     *
     */
    private void insertFixUp(RBNode node){
        this.root.setColor(BLACK);
        RBNode parent = parentOf(node);
        RBNode gparent = parentOf(parent);
        //情景4:插入节点的父节点为红色
        if(parent != null && isRed(parent)){
            //如果父节点是红色,name一定存在爷爷节点。因为根节点不可能是红色
            RBNode uncle = null;
            if(parent == gparent.left){
                uncle = gparent.right;
                //情景4.1:叔叔节点存在,并且为红色(父-叔 双红)
                if(uncle != null && isRed(uncle)){
                    //将爸爸和叔叔染色为黑色,将爷爷染色为红色,并且再以爷爷为当前节点 进行下一轮处理
                    setBlack(parent);
                    setBlack(uncle);
                    setRed(gparent);
                    insertFixUp(gparent);
                    return;
                }
                //情景4.2:叔叔节点不存在,或者为黑色
                if(uncle == null || isBlack(uncle)){
                    //情景4.2.1:插入节点为其父节点的左子节点(LL情况)。将爸爸染色为黑色,将爷爷染色为红色,然后以爷爷节点右旋就完成了
                    if(node == parent.left){
                        setBlack(parent);
                        setRed(gparent);
                        rightRotate(gparent);
                        return;
                    }
                    //情景4.2.2:插入节点为其父节点的右子节点(LR情况)
                    //以爸爸节点进行一次左旋。得到LL双红的情景(4.2.1),然后指定爸爸节点为当前节点进行下一轮处理
                    if(node == parent.right){
                        leftRotate(parent);
                        insertFixUp(parent);
                        return;
                    }
                }
            }else{//父节点为爷爷节点的右子树
                uncle = gparent.left;
                //情景4.1:叔叔节点存在,并且为红色(父-叔 双红)
                if(uncle != null && isRed(uncle)){
                    //将爸爸和叔叔染色为黑色,将爷爷染色为红色,并且再以爷爷为当前节点 进行下一轮处理
                    setBlack(parent);
                    setBlack(uncle);
                    setRed(gparent);
                    insertFixUp(gparent);
                    return;
                }
                //情景4.3:叔叔节点不存在,或者为黑色
                if(uncle == null || isBlack(uncle)){
                    //情景4.3.1:插入节点为其父节点的右子节点(RR情况)。将爸爸染色为黑色。将爷爷染色为红色。将爷爷左旋,就完成了
                    if(node == parent.right){
                        setBlack(parent);
                        setRed(gparent);
                        leftRotate(gparent);
                        return;
                    }
                    //情景4.3.2:插入节点为其父节点的左子节点(RL情况)
                    //以爸爸节点进行一次右旋,得到RR双红的情景(4.3.1),然后指定爸爸节点为当前节点进行下一轮处理
                    if(node == parent.left){
                        rightRotate(parent);
                        insertFixUp(parent);
                        return;
                    }
                }
            }
        }
    }

    /**
     *  左旋方法
     *  左旋示意图:左旋x节点
     *      P                        P
     *      |                        |
     *      x         ----->         y
     *     / \                      / \
     *   lx   y                    x   ry
     *       / \                  / \
     *     ly  ry               lx   ly
     *
     * 1.将x的右子节点指向y的左子节点(ly).将y的左子节点的父节点更新为x
     * 2.当x的父节点(不为空时)。更新y的父节点为x的父节点。并将x的父节点 指定 子树 (当前x的子树位置) 执行为y
     * 3.将x的父节点更新为y.将y的左子节点更新为x
     */
    private void leftRotate(RBNode x){
        RBNode y = x.right;
        //1.将x的右子节点指向y的左子节点(ly).将y的左子节点的父节点更新为x
        x.right = y.left;
        if(y.left != null){
            y.left.parent = x;
        }
        //2.当x的父节点(不为空时)。更新y的父节点为x的父节点。并将x的父节点 指定 子树 (当前x的子树位置) 执行为y
        if(x.parent != null){
            y.parent = x.parent;
            if(x==x.parent.left){
                x.parent.left = y;
            }else{
                x.parent.right = y;
            }
        }else{//说明x为根节点。此时需要更新y为根节点
            this.root = y;
            this.root.parent = null;
        }
        //3.将x的父节点更新为y.将y的左子节点更新为x
        x.parent = y;
        y.left = x;
    }

    /**
     *  右旋方法
     *  右旋示意图:右旋y节点
     *      P                        P
     *      |                        |
     *      y         ----->         x
     *     / \                      / \
     *    x   ry                   lx  y
     *  / \                           / \
     * lx  ly                       ly  ry
     * 1.将y的左子节点指向x的右子节点,并且更新x的右子节点的父节点为y
     * 2.当y的父节点不为空时,更新x的父节点为y的父节点,更新y的父节点的指定子节点(y当前的位置)为x
     * 3.更新y的父节点为x, 更新x的右子节点为y
     */
    private void rightRotate(RBNode y){
        RBNode x = y.left;
        //1.将y的左子节点指向x的右子节点,并且更新x的右子节点的父节点为y
        y.left = x.right;
        if(x.right != null){
            x.right.parent = y;
        }
        //2.当y的父节点不为空时,更新x的父节点为y的父节点,更新y的父节点的指定子节点(y当前的位置)为x
        if(y.parent != null){
            x.parent = y.parent;
            if(y == y.parent.left){
                y.parent.left = x;
            }else{
                y.parent.right = x;
            }
        }else{
            this.root = x;
            this.root.parent = null;
        }
        //3.更新y的父节点为x, 更新x的右子节点为y
        y.parent = x;
        x.right = y;

    }
    static class RBNode<K extends Comparable<K>,V>{
        private RBNode parent;
        private RBNode left;
        private RBNode right;
        private boolean color;
        private K key;
        private V value;

        public RBNode() {
        }

        public RBNode(RBNode parent, RBNode left, RBNode right, boolean color, K key, V value) {
            this.parent = parent;
            this.left = left;
            this.right = right;
            this.color = color;
            this.key = key;
            this.value = value;
        }

        public RBNode getParent() {
            return parent;
        }

        public void setParent(RBNode parent) {
            this.parent = parent;
        }

        public RBNode getLeft() {
            return left;
        }

        public void setLeft(RBNode left) {
            this.left = left;
        }

        public RBNode getRight() {
            return right;
        }

        public void setRight(RBNode right) {
            this.right = right;
        }

        public boolean isColor() {
            return color;
        }

        public void setColor(boolean color) {
            this.color = color;
        }

        public K getKey() {
            return key;
        }

        public void setKey(K key) {
            this.key = key;
        }

        public V getValue() {
            return value;
        }

        public void setValue(V value) {
            this.value = value;
        }
    }
}

2.2 TreeOperation.java

package com.ge.es.hcapmelsservice.service;

import java.sql.SQLOutput;

/**
 * @author zhaokai
 * @create 2021-01-28-10:12
 */
public class TreeOperation {
    //用于获得树的层数
    public static int getTreeDepth(RBTree.RBNode root){
        return root == null?0:(1+Math.max(getTreeDepth(root.getLeft()),getTreeDepth(root.getRight())));
    }
    private static void writeArray(RBTree.RBNode currNode,int rowIndex,int columnlndex,String[][] res,int treeDepth){
        //保证输入的树不为空
        if(currNode == null) return;
        //先将当前节点保存到二维数组中
        res[rowIndex][columnlndex] = String.valueOf(currNode.getKey()+"-"+(currNode.isColor()?"R":"B")+"");

        //计算当前位于树的第几层
        int currLevel = ((rowIndex+1)/2);
        //若到了最后一层,则返回
        if(currLevel == treeDepth) return;
        //计算当前行到下一行,每个元素之间的间隔(下一行的列索引与当前元素的列索引之间的间隔)
        int gap = treeDepth -currLevel -1;

        //对左儿子进行判断,若有左儿子,则记录相应的"/"与左儿子的值
        if(currNode.getLeft()!=null){
            res[rowIndex+1][columnlndex-gap] ="/";
            writeArray(currNode.getLeft(),rowIndex+2,columnlndex-gap*2,res,treeDepth);
        }
        //对右儿子进行判断,若有右儿子,则记录相应的"\"与右儿子的值
        if(currNode.getRight()!= null){
            res[rowIndex+1][columnlndex+gap] = "\\";
            writeArray(currNode.getRight(),rowIndex+2,columnlndex+gap*2,res,treeDepth);

        }
    }
    public static void show(RBTree.RBNode root){
        if(root == null) System.out.println("EMPTY!");
        //得到树的深度
        int treeDepth = getTreeDepth(root);

        //最后一行的宽度为2的(n-1)次方乘3,再加1
        //作为整个二维数组的宽度
        int arrayHeight = treeDepth *2 -1;
        int arrayWidth = (2 <<(treeDepth-2))*3+1;
        //用一个字符串数组来存储每个位置应该显示的元素
        String[][] res = new String[arrayHeight][arrayWidth];
        //对数组进行初始化,默认为一个空格
        for (int i = 0; i < arrayHeight; i++) {
            for (int j = 0; j <arrayWidth ; j++) {
                res[i][j]=" ";
            }
        }
        //从根节点开始递归整个树
        writeArray(root,0,arrayWidth/2,res,treeDepth);
        //此时,已经将所有需要显示额元素存储到了二维数组中,将其拼接并打印即可
        for(String[] line:res){
            StringBuilder sb = new StringBuilder();
            for (int i = 0; i < line.length; i++) {
                sb.append(line[i]);
                if(line[i].length()>1 && i<=line.length-1){
                    i+=line[i].length()>4?2:line[i].length()-1;
                }
            }
            System.out.println(sb.toString());
        }
    }
}

2.3 RBTreeTest.java

package com.ge.es.hcapmelsservice.service;

import java.util.Scanner;

/**
 * @author zhaokai
 * @create 2021-01-28-10:03
 */
public class RBTreeTest {
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        RBTree<String,Object> rbt = new RBTree();
        while (true){
            System.out.println("请输入key:");
            String key = scanner.next();
            System.out.println();
            rbt.insert(key,null);

            TreeOperation.show(rbt.getRoot());
        }
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值