1 原理
2 java代码实现红黑树
2.1 RBTree.java
package com.ge.es.hcapmelsservice.service;
/**
* @author zhaokai
* @create 2021-01-25-16:50
* 1.创建RBTree.定义颜色
* 2.创建RBNode
* 3.辅助方法定义:parentOf(node). isRed(node). isBlack(node), setRed(node). setBlack(node). inOrderPrint()
* 4.左旋方法定义:leftRotate(node)
* 5.右旋方法定义:rightRotate(node)
* 6.公开插入接口方法定义:insert(K key, V value);
* 7.内部插入接口方法定义:insert(RBNode node);
* 8.修正插入导致红黑树失衡的方法定义:insertFIxUp(RBNode node);
* 9.测试红黑树正确性
*/
public class RBTree<K extends Comparable<K>,V> {
private static final boolean RED = true;
private static final boolean BLACK = false;
/**树根的引用*/
private RBNode root;
public RBNode getRoot() {
return root;
}
/**
* 获取当前节点的父节点
* @param node
*/
private RBNode parentOf(RBNode node){
if(node != null){
return node.parent;
}
return null;
}
/**
* 节点是否为红色
* @param node
*/
private boolean isRed(RBNode node){
if(node != null){
return node.color == RED;
}
return false;
}
/**
* 设置节点为红色
* @param node
*/
private void setRed(RBNode node){
if(node != null){
node.color = RED;
}
}
/**
* 节点是否为黑色
* @param node
*/
private boolean isBlack(RBNode node){
if(node != null){
return node.color == BLACK;
}
return false;
}
/**
* 设置节点为黑色
* @param node
*/
private void setBlack(RBNode node){
if(node != null){
node.color = BLACK;
}
}
/**
* 中序打印二叉树
*/
public void inOrderPrint(){
inOrderPrint(this.root);
}
private void inOrderPrint(RBNode node){
if(root != null){
inOrderPrint(node.left);
System.out.println("key:" + node.key +",value:" + node.value);
inOrderPrint(node.right);
}
}
/**
* 公用的插入方法
* @param key
* @param value
*/
public void insert(K key,V value){
RBNode node = new RBNode();
node.setKey(key);
node.setValue(value);
//新节点 一定是红色
node.setColor(RED);
insert(node);
}
private void insert(RBNode node){
//第一步:查找当前node的父节点
RBNode parent = null;
RBNode x = this.root;
while(x != null){
parent = x;
//cmp>0说明node.key 大于x.key 需要到x的右子树查找
//cmp==0说明node.key 等于x.key 需要进行替换操作
//cmp<0说明node.key 小于 x.key 需要到x的左子树查找
int cmp = node.key.compareTo(x.key);
if(cmp > 0){
x=x.right;
}else if(cmp == 0){
x.setValue(node.getValue());
return;
}else{
x=x.left;
}
}
node.parent = parent;
if(parent != null){
//判断node与parent 的key 谁大
int cmp = node.key.compareTo(parent.key);
if(cmp > 0){//当前node的key比parent的key大,需要把node放入parent的右子节点
parent.right = node;
}else{//当前node的key比parent的key小,需要把node放入parent的左子节点
parent.left = node;
}
}else{
this.root = node;
}
//需要调用修复红黑树平衡的方法
insertFixUp(node);
}
/**
* 插入后修复红黑树平衡的方法
* |---情景1:红黑树为空树。将根节点染色为黑色
* |---情景2:插入节点的key已经存在。不需要处理
* |---情景3:插入节点的父节点为黑色。因为插入的路径。黑色节点没有变化,所以红黑树依然平衡,所以不需要处理
*
* 情景4 需要咱们去处理
* |---情景4:插入节点的父节点为红色
* |---情景4.1:叔叔节点存在,并且为红色(父-叔 双红)。将爸爸和叔叔染色为黑色,将爷爷染色为红色。并且再以爷爷节点为当前节点,进行下一轮处理
* |---情景4.2:叔叔节点不存在,或者为黑色,父节点为爷爷节点的左子树
* |---情景4.2.1:插入节点为其父节点的左子节点(LL情况)。将爸爸染色为黑色,将爷爷染色为红色,然后以爷爷节点右旋就完成了
* |---情景4.2.2:插入节点为其父节点的右子节点(LR情况)。以爸爸节点进行一次左旋。得到LL双红的情景(4.2.1),然后指定爸爸节点为当前节点进行下一轮处理
* |---情景4.3:叔叔节点不存在,或者为黑色,父节点为爷爷节点的右子树
* |---情景4.3.1:插入节点为其父节点的右子节点(RR情况)。将爸爸染色为黑色。将爷爷染色为红色。将爷爷左旋,就完成了
* |---情景4.3.2:插入节点为其父节点的左子节点(RL情况)。以爸爸节点进行一次右旋,得到RR双红的情景(4.3.1),然后指定爸爸节点为当前节点进行下一轮处理
*
*/
private void insertFixUp(RBNode node){
this.root.setColor(BLACK);
RBNode parent = parentOf(node);
RBNode gparent = parentOf(parent);
//情景4:插入节点的父节点为红色
if(parent != null && isRed(parent)){
//如果父节点是红色,name一定存在爷爷节点。因为根节点不可能是红色
RBNode uncle = null;
if(parent == gparent.left){
uncle = gparent.right;
//情景4.1:叔叔节点存在,并且为红色(父-叔 双红)
if(uncle != null && isRed(uncle)){
//将爸爸和叔叔染色为黑色,将爷爷染色为红色,并且再以爷爷为当前节点 进行下一轮处理
setBlack(parent);
setBlack(uncle);
setRed(gparent);
insertFixUp(gparent);
return;
}
//情景4.2:叔叔节点不存在,或者为黑色
if(uncle == null || isBlack(uncle)){
//情景4.2.1:插入节点为其父节点的左子节点(LL情况)。将爸爸染色为黑色,将爷爷染色为红色,然后以爷爷节点右旋就完成了
if(node == parent.left){
setBlack(parent);
setRed(gparent);
rightRotate(gparent);
return;
}
//情景4.2.2:插入节点为其父节点的右子节点(LR情况)
//以爸爸节点进行一次左旋。得到LL双红的情景(4.2.1),然后指定爸爸节点为当前节点进行下一轮处理
if(node == parent.right){
leftRotate(parent);
insertFixUp(parent);
return;
}
}
}else{//父节点为爷爷节点的右子树
uncle = gparent.left;
//情景4.1:叔叔节点存在,并且为红色(父-叔 双红)
if(uncle != null && isRed(uncle)){
//将爸爸和叔叔染色为黑色,将爷爷染色为红色,并且再以爷爷为当前节点 进行下一轮处理
setBlack(parent);
setBlack(uncle);
setRed(gparent);
insertFixUp(gparent);
return;
}
//情景4.3:叔叔节点不存在,或者为黑色
if(uncle == null || isBlack(uncle)){
//情景4.3.1:插入节点为其父节点的右子节点(RR情况)。将爸爸染色为黑色。将爷爷染色为红色。将爷爷左旋,就完成了
if(node == parent.right){
setBlack(parent);
setRed(gparent);
leftRotate(gparent);
return;
}
//情景4.3.2:插入节点为其父节点的左子节点(RL情况)
//以爸爸节点进行一次右旋,得到RR双红的情景(4.3.1),然后指定爸爸节点为当前节点进行下一轮处理
if(node == parent.left){
rightRotate(parent);
insertFixUp(parent);
return;
}
}
}
}
}
/**
* 左旋方法
* 左旋示意图:左旋x节点
* P P
* | |
* x -----> y
* / \ / \
* lx y x ry
* / \ / \
* ly ry lx ly
*
* 1.将x的右子节点指向y的左子节点(ly).将y的左子节点的父节点更新为x
* 2.当x的父节点(不为空时)。更新y的父节点为x的父节点。并将x的父节点 指定 子树 (当前x的子树位置) 执行为y
* 3.将x的父节点更新为y.将y的左子节点更新为x
*/
private void leftRotate(RBNode x){
RBNode y = x.right;
//1.将x的右子节点指向y的左子节点(ly).将y的左子节点的父节点更新为x
x.right = y.left;
if(y.left != null){
y.left.parent = x;
}
//2.当x的父节点(不为空时)。更新y的父节点为x的父节点。并将x的父节点 指定 子树 (当前x的子树位置) 执行为y
if(x.parent != null){
y.parent = x.parent;
if(x==x.parent.left){
x.parent.left = y;
}else{
x.parent.right = y;
}
}else{//说明x为根节点。此时需要更新y为根节点
this.root = y;
this.root.parent = null;
}
//3.将x的父节点更新为y.将y的左子节点更新为x
x.parent = y;
y.left = x;
}
/**
* 右旋方法
* 右旋示意图:右旋y节点
* P P
* | |
* y -----> x
* / \ / \
* x ry lx y
* / \ / \
* lx ly ly ry
* 1.将y的左子节点指向x的右子节点,并且更新x的右子节点的父节点为y
* 2.当y的父节点不为空时,更新x的父节点为y的父节点,更新y的父节点的指定子节点(y当前的位置)为x
* 3.更新y的父节点为x, 更新x的右子节点为y
*/
private void rightRotate(RBNode y){
RBNode x = y.left;
//1.将y的左子节点指向x的右子节点,并且更新x的右子节点的父节点为y
y.left = x.right;
if(x.right != null){
x.right.parent = y;
}
//2.当y的父节点不为空时,更新x的父节点为y的父节点,更新y的父节点的指定子节点(y当前的位置)为x
if(y.parent != null){
x.parent = y.parent;
if(y == y.parent.left){
y.parent.left = x;
}else{
y.parent.right = x;
}
}else{
this.root = x;
this.root.parent = null;
}
//3.更新y的父节点为x, 更新x的右子节点为y
y.parent = x;
x.right = y;
}
static class RBNode<K extends Comparable<K>,V>{
private RBNode parent;
private RBNode left;
private RBNode right;
private boolean color;
private K key;
private V value;
public RBNode() {
}
public RBNode(RBNode parent, RBNode left, RBNode right, boolean color, K key, V value) {
this.parent = parent;
this.left = left;
this.right = right;
this.color = color;
this.key = key;
this.value = value;
}
public RBNode getParent() {
return parent;
}
public void setParent(RBNode parent) {
this.parent = parent;
}
public RBNode getLeft() {
return left;
}
public void setLeft(RBNode left) {
this.left = left;
}
public RBNode getRight() {
return right;
}
public void setRight(RBNode right) {
this.right = right;
}
public boolean isColor() {
return color;
}
public void setColor(boolean color) {
this.color = color;
}
public K getKey() {
return key;
}
public void setKey(K key) {
this.key = key;
}
public V getValue() {
return value;
}
public void setValue(V value) {
this.value = value;
}
}
}
2.2 TreeOperation.java
package com.ge.es.hcapmelsservice.service;
import java.sql.SQLOutput;
/**
* @author zhaokai
* @create 2021-01-28-10:12
*/
public class TreeOperation {
//用于获得树的层数
public static int getTreeDepth(RBTree.RBNode root){
return root == null?0:(1+Math.max(getTreeDepth(root.getLeft()),getTreeDepth(root.getRight())));
}
private static void writeArray(RBTree.RBNode currNode,int rowIndex,int columnlndex,String[][] res,int treeDepth){
//保证输入的树不为空
if(currNode == null) return;
//先将当前节点保存到二维数组中
res[rowIndex][columnlndex] = String.valueOf(currNode.getKey()+"-"+(currNode.isColor()?"R":"B")+"");
//计算当前位于树的第几层
int currLevel = ((rowIndex+1)/2);
//若到了最后一层,则返回
if(currLevel == treeDepth) return;
//计算当前行到下一行,每个元素之间的间隔(下一行的列索引与当前元素的列索引之间的间隔)
int gap = treeDepth -currLevel -1;
//对左儿子进行判断,若有左儿子,则记录相应的"/"与左儿子的值
if(currNode.getLeft()!=null){
res[rowIndex+1][columnlndex-gap] ="/";
writeArray(currNode.getLeft(),rowIndex+2,columnlndex-gap*2,res,treeDepth);
}
//对右儿子进行判断,若有右儿子,则记录相应的"\"与右儿子的值
if(currNode.getRight()!= null){
res[rowIndex+1][columnlndex+gap] = "\\";
writeArray(currNode.getRight(),rowIndex+2,columnlndex+gap*2,res,treeDepth);
}
}
public static void show(RBTree.RBNode root){
if(root == null) System.out.println("EMPTY!");
//得到树的深度
int treeDepth = getTreeDepth(root);
//最后一行的宽度为2的(n-1)次方乘3,再加1
//作为整个二维数组的宽度
int arrayHeight = treeDepth *2 -1;
int arrayWidth = (2 <<(treeDepth-2))*3+1;
//用一个字符串数组来存储每个位置应该显示的元素
String[][] res = new String[arrayHeight][arrayWidth];
//对数组进行初始化,默认为一个空格
for (int i = 0; i < arrayHeight; i++) {
for (int j = 0; j <arrayWidth ; j++) {
res[i][j]=" ";
}
}
//从根节点开始递归整个树
writeArray(root,0,arrayWidth/2,res,treeDepth);
//此时,已经将所有需要显示额元素存储到了二维数组中,将其拼接并打印即可
for(String[] line:res){
StringBuilder sb = new StringBuilder();
for (int i = 0; i < line.length; i++) {
sb.append(line[i]);
if(line[i].length()>1 && i<=line.length-1){
i+=line[i].length()>4?2:line[i].length()-1;
}
}
System.out.println(sb.toString());
}
}
}
2.3 RBTreeTest.java
package com.ge.es.hcapmelsservice.service;
import java.util.Scanner;
/**
* @author zhaokai
* @create 2021-01-28-10:03
*/
public class RBTreeTest {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
RBTree<String,Object> rbt = new RBTree();
while (true){
System.out.println("请输入key:");
String key = scanner.next();
System.out.println();
rbt.insert(key,null);
TreeOperation.show(rbt.getRoot());
}
}
}