深度学习的难点

深度学习的核心问题就是一个非常难的优化问题。所以在神经网络引入后的几十年间,深度神经网络的优化问题的困难性是阻碍它们成为主流的一个重要因素。并导致了它们在20世纪90年代到21世纪初期间的衰落。不过现在已经基本解决了这个问题。在本篇博文中,我会探讨优化神经网络的“困难性”,以及理论上是怎么解释这个问题的。简而言之:神经网络变得越深,优化问题就会变得越难。

最简单的神经网络是单节点感知器,其优化问题是凸问题。凸优化问题的好处是所有的局部最小值也是全局最小值。存在各种各样的优化算法来解决凸优化问题,并且每隔几年就会发现更好的用于凸优化的多项式时间的算法。使用凸优化算法可以轻松地优化单个神经元的权重(参见下图)。下面让我们看看扩展一个单神经元后会发生什么。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
深度学习是一种基于人工神经网络的机器学习方法,它通过构建多层非线性模型来解决复杂的学习任务,如图像识别、语音识别、自然语言处理等。深度学习的技术路线通常包括以下几个关键步骤: 1. **感知机和前馈神经网络(Perceptron & Feedforward Networks)**:这是最基础的深度学习模型,通过输入数据一层一层的传递,逐步提取特征。 2. **多层感知器(Multi-layer Perceptron, MLP)**:增加隐藏层,引入非线性激活函数,增强模型表达能力。 3. **卷积神经网络(Convolutional Neural Networks, CNN)**:专为图像处理设计,利用局部连接和共享权重,减少参数量,提高计算效率。 4. **循环神经网络(Recurrent Neural Networks, RNN)**:针对序列数据,具有记忆功能,常用于自然语言处理。 5. **长短期记忆(LSTM/GRU)**:RNN的改进版,解决了长期依赖性问题,更好地处理时序信息。 6. **深度信念网络(Deep Belief Networks, DBNs)**:一种层次化的无监督学习方法,用于预训练深层模型。 7. **自编码器(Autoencoders)**:用于无监督特征学习,压缩和重构输入数据。 8. **生成对抗网络(Generative Adversarial Networks, GANs)**:由生成器和判别器相互博弈,用于生成逼真的新样本。 9. **Transformer**:用于序列到序列建模,特别在自然语言处理中表现出色。 难点主要包括: - **大量的标注数据**:深度学习模型通常需要大量高质量的数据进行训练。 - **模型的复杂性和可解释性**:深度模型往往难以理解和解释内部工作原理。 - **过拟合和泛化**:随着模型复杂度增加,防止过拟合变得困难。 - **计算资源**:深度学习训练过程消耗大量GPU资源。 - **优化算法**:选择合适的优化器和调整学习率是优化过程中的挑战。 - **超参数调优**:不同模型和任务可能需要不同的超参数设置。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值