基于遗传算法(Genetic Algorithm, GA)整定的 PID 控制

基于遗传算法(Genetic Algorithm, GA)整定的 PID 控制 是一种智能优化方法,利用遗传算法搜索最佳 PID 参数(Kp,Ki,KdK_p, K_i, K_dKp​,Ki​,Kd​),以提高控制系统的性能。遗传算法通过模拟生物进化过程,利用选择、交叉和变异等操作,找到满足性能指标的最优控制参数。


原理分析

  1. 传统 PID 控制问题

    • PID 控制器需要根据系统特性合理设置比例、积分和微分增益。
    • 传统方法(如试凑法、Ziegler-Nichols法)可能无法应对复杂、非线性或时变系统。
  2. 遗传算法的引入

    • 遗传算法通过全局搜索优化 Kp,Ki,KdK_p, K_i, K_dKp​,Ki​,Kd​,避免局部最优。
    • 定义目标函数(性能指标),如积分绝对误差(IAE)、**积分平方误差(ISE)**等,评估每组 PID 参数的优劣。
  3. PID 参数优化流程

    • 编码:将 PID 参数 Kp,Ki,KdK_p, K_i, K_dKp​,Ki​,Kd​ 编码为遗传算法的个体。
    • 初始种群:随机生成多组 PID 参数组成初始种群。
    • 目标函数:评估每组 PID 参数在系统中的控制效果。
    • 选择、交叉、变异:通过遗传操作生成下一代,逐步逼近最优参数。
    • 迭代:不断优化,直至满足收敛条件。

系统框图

系统框图的主要组成:

  • 遗传算法模块:负责优化 PID 参数。
    • 输入:初始种群、目标函数。
    • 输出:最优 PID 参数 Kp,Ki,KdK_p, K_i, K_dKp​,Ki​,Kd​。
  • PID 控制器:利用优化后的参数控制系统。
  • 被控对象:控制目标,如温度控制、电机位置控制等。
  • 性能评价模块:计算控制误差,反馈给遗传算法。

控制算法流程

  1. 初始化遗传算法

    • 设置种群大小、交叉概率、变异概率和最大迭代次数。
    • 随机生成种群,每个个体表示一组 PID 参数。

  1. 迭代优化

    • 适应度计算:根据目标函数计算每个个体的适应度。
    • 选择:保留表现较好的个体。
    • 交叉:生成新个体,模拟基因重组。
    • 变异:随机改变个体部分基因,增加多样性。
    • 更新种群,重复计算,直到满足停止条件。
  2. 最优参数应用

    • 输出最优 PID 参数,将其应用到控制器中。

C++ 实现

以下为基于遗传算法的 PID 参数优化离散实现代码:

#include <iostream>
#include <vector>
#include <cmath>
#include <algorithm>
#include <random>

struct PIDParams {
    double Kp;
    double Ki;
    double Kd;
};

// 被控对象模拟(简单一阶系统)
double simulateSystem(double input, double dt) {
    static double output = 0.0;
    static double last_input = 0.0;
    output += dt * (input - output);  // 简化的一阶惯性
    last_input = input;
    return output;
}

// 目标函数:计算控制误差积分绝对误差 IAE
double evaluatePID(const PIDParams& pid, double setpoint, double dt, int steps) {
    double error_sum = 0.0;
    double integral = 0.0, derivative = 0.0, prev_error = 0.0;
    double output = 0.0;

    for (int i = 0; i < steps; ++i) {
        double error = setpoint - output;
        integral += error * dt;
        derivative = (error - prev_error) / dt;

        double control_signal = pid.Kp * error + pid.Ki * integral + pid.Kd * derivative;
        output = simulateSystem(control_signal, dt);

        error_sum += std::abs(error);
        prev_error = error;
    }

    return error_sum;  // 返回误差积分作为适应度值
}

// 遗传算法参数优化
PIDParams optimizePID(int population_size, int generations, double setpoint, double dt, int steps) {
    std::random_device rd;
    std::mt19937 gen(rd());
    std::uniform_real_distribution<> dis(0.0, 10.0);
    std::uniform_real_distribution<> mutation_dis(-0.5, 0.5);

    // 初始化种群
    std::vector<PIDParams> population(population_size);
    for (auto& individual : population) {
        individual.Kp = dis(gen);
        individual.Ki = dis(gen);
        individual.Kd = dis(gen);
    }

    for (int gen_idx = 0; gen_idx < generations; ++gen_idx) {
        // 评估适应度
        std::vector<std::pair<double, PIDParams>> fitness;
        for (const auto& individual : population) {
            double fitness_value = evaluatePID(individual, setpoint, dt, steps);
            fitness.emplace_back(fitness_value, individual);
        }

        // 按适应度排序(误差越小越好)
        std::sort(fitness.begin(), fitness.end(),
                  [](const auto& a, const auto& b) { return a.first < b.first; });

        // 选择最优个体
        std::vector<PIDParams> new_population;
        for (size_t i = 0; i < population_size / 2; ++i) {
            new_population.push_back(fitness[i].second);
        }

        // 交叉操作
        for (size_t i = 0; i < population_size / 2; ++i) {
            PIDParams parent1 = new_population[i];
            PIDParams parent2 = new_population[(i + 1) % (population_size / 2)];
            PIDParams offspring = {
                (parent1.Kp + parent2.Kp) / 2.0,
                (parent1.Ki + parent2.Ki) / 2.0,
                (parent1.Kd + parent2.Kd) / 2.0
            };
            new_population.push_back(offspring);
        }

        // 变异操作
        for (auto& individual : new_population) {
            individual.Kp += mutation_dis(gen);
            individual.Ki += mutation_dis(gen);
            individual.Kd += mutation_dis(gen);
        }

        population = new_population;  // 更新种群
    }

    return population.front();  // 返回最优个体
}

int main() {
    double setpoint = 1.0;  // 目标值
    double dt = 0.1;        // 时间步长
    int steps = 100;        // 仿真步数
    int population_size = 20;
    int generations = 50;

    PIDParams optimal_pid = optimizePID(population_size, generations, setpoint, dt, steps);
    std::cout << "Optimal PID Parameters:\n"
              << "Kp: " << optimal_pid.Kp << "\n"
              << "Ki: " << optimal_pid.Ki << "\n"
              << "Kd: " << optimal_pid.Kd << "\n";

    return 0;
}

特点与优势

  1. 全局优化能力

    • 能够避免局部最优,适合复杂控制系统。
  2. 自适应能力强

    • 可动态适应系统参数变化。
  3. 灵活性高

    • 支持多种目标函数(IAE, ISE, ITAE)。

总结

基于遗传算法整定 PID 控制,通过智能搜索策略优化控制参数,有效提升复杂系统的控制性能。广泛应用于工业自动化、机器人控制等领域,尤其适用于非线性、时变系统的优化控制问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值