服务器有多台GPU 如何指定GPU运行程序

方法1:直接在运行程序命令 前添加  CUDA_VISIBLE_DEVICES=1(自己服务器上的GPU number) 样例如下:

CUDA_VISIBLE_DEVICES=1 python your_program.py

方法2:在自己的代码中添加

import os
os.environ["CUDA_VISIBLE_DEVICES"] = "2"

 

### 远程服务器上配置多张GPU进行计算 #### 设置远程访问环境 为了有效利用远程AMD Radeon GPU资源来加速本地计算,需先建立稳定的远程访问环境。对于Linux系统下的服务器而言,通常采用SSH协议实现安全的远程登录[^1]。 #### 安装必要的驱动与库文件 确保远程服务器已安装适用于所使用的GPU型号的最新CUDA驱动程序,并且正确设置了相应的环境变量。这一步骤至关重要,因为只有当操作系统能够识别并管理这些硬件设备时,后续的应用层调用才能正常工作。此外,还需安装cuDNN等深度学习框架依赖项以优化性能表现[^2]。 #### 使用分布式计算框架 针对拥有多个GPU节点的情况,推荐借助Horovod或TensorFlow内置的支持功能来进行模型并行化训练。这类工具允许开发者轻松定义跨不同设备的任务分配策略,从而充分发挥集群内所有可用算力的优势。具体来说,在编写Python脚本时可以通过`tf.distribute.MirroredStrategy()`或者horovod.run()函数接口完成这一目标。 #### 编写支持多GPU的代码示例 下面给出一段基于PyTorch框架编写的简单实例,展示了如何让程序自动检测当前环境中存在的全部NVIDIA GPUs,并合理安排任务负载: ```python import torch import os def setup_multi_gpu(): ngpus = torch.cuda.device_count() if not torch.cuda.is_available() or ngpus < 2: raise RuntimeError('This code requires at least two NVIDIA GPUs.') device_ids = list(range(ngpus)) print(f'Detected {ngpus} available GPUs: ', end='') for i in range(len(device_ids)): print(torch.cuda.get_device_name(i), end=' ') return device_ids if __name__ == '__main__': devices = setup_multi_gpu() model = ... # Define your neural network architecture here. optimizer = ... loss_fn = ... # Wrap the model with DataParallel to enable multi-GPU training. parallel_model = torch.nn.DataParallel(model, device_ids=devices) # Move data and labels tensors onto one of the GPUs before feeding them into the forward pass. inputs = some_input_tensor.to(devices[0]) targets = target_labels_tensor.to(devices[0]) outputs = parallel_model(inputs) loss = loss_fn(outputs, targets) optimizer.zero_grad() loss.backward() optimizer.step() ``` 此段代码首先检查是否有足够的GPU可供使用,接着创建了一个包含所有可见GPU ID 的列表。之后通过 `DataParallel` 类封装原始神经网络结构,使得每次前向传播过程中输入数据会被均匀划分到各个子模块上去独立处理。最后需要注意的是,在实际应用中应当根据具体情况调整batch size大小以及梯度累积机制等因素以达到最佳效果[^3]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值