多GPU训练网络模型——数据并行(DataParallel、DistributedDataParallel)

本文详细介绍了多GPU训练中的数据并行方法,包括DataParallel(DP)和DistributedDataParallel(DDP)。DP是单机多卡训练,使用简单但速度较慢,而DDP支持单机多卡和多机多卡,速度更快,但实现相对复杂。文章讨论了两者的工作原理、优缺点,并给出了使用多GPU训练模型的保存与调用的注意事项。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、概述

1.分布式与并行

2.模型并行与数据并行:

3.基于数据的并行

4.DP(DataParallel)与DDP(DistributedDataParallel)

二、DP的实现

三、DDP的实现

四、DP和DDP的优缺点

1.DP的优缺点

2.DDP的优缺点

五、使用单GPU与多GPU保存的区别(使用多GPU训练的模型的保存与调用)

1.多GPU训练后模型的保存        

2.使用多GPU训练的模型的调用

六、注意事项及常见问题

1.DP

2.DDP

七、参考


    本文章主要介绍多GPU训练中的数据并行方式:DataParallel和DistributedDataParallel。

其中详细介绍了这两个方法的工作模式、优缺点及运行过程中出现的问题。

一、概述

1.分布式与并行

分布式:分布式是指使用多台服务器的多块GPU进行运算,即多机多卡。

并行:并行是指使用一台服务器的多个GPU运算,即单机多卡。

2.模型并行与数据并行:

模型并行:模型并行是指根据规则将模型拆分为多个部分分别分配到多个GPU上,每个GPU输入数据是一致的。

数据并行:数据并行是指将数据平均分配到多个GPU上,每个GPU的模型是一致的。

相较

### 使用PythonGPU加速模型训练 #### 安装必要的软件和配置环境 为了使Python程序能利用GPU进行高效运,需确保计机已安装适合的NVIDIA GPU驱动以及CUDA工具包。这一步骤对于激活硬件潜能至关重要[^1]。 #### 导入支持GPU加速的库 在Python中执行基于GPU的任务时,常用的是深度学习框架如TensorFlow或PyTorch,它们内置了对GPU的支持功能;另外还有专门用于科学计的库比如CuPy或是PyCUDA等也可以帮助完成这项工作[^2]。 #### 将模型迁移到GPU设备上运行 当准备就绪后,在实际操作层面,则要将定义好的神经网络结构连同输入的数据集一同迁移至指定的GPU内存空间内。具体做法是在创建好模型实例之后调用`.to()`方法传入目标device名称(例如`cuda:0`表示第一个可用的GPU),同样地也要把所有的张量对象都做同样的处理以便于后续的操作能够在GPU上顺利展开[^3]。 ```python import torch from torchvision import models # 假设已经加载好了预训练模型model 和 数据x, y device = 'cuda:0' if torch.cuda.is_available() else 'cpu' model = model.to(device) x, y = x.to(device), y.to(device) # 开始训练过程... ``` #### 利用GPU提升性能 如果拥有不止一块GPU卡的话,还可以考虑采用更高级别的并行化策略进一步优化效率。PyTorch提供了两种主要的方式来进行GPU编程——分别是`DataParallel`模式下的单进程管理GPU方案,或者是更为灵活但也相对复杂的分布式训练方式即`DistributedDataParallel`,后者允许跨节点间的协同作业以达到更好的扩展性和资源利用率[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Billie使劲学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值