Karamata 不等式

在数学,Karamata不等式,后命名乔文·卡拉马塔,也被称为优化不等式,用于处理定义在实数区间的的实值函数。它推广了Jensen不等式的离散形式,并反过来推广了Schur-凸函数的概念。
最近处理不等式的时候反复碰到,故归纳之.

定理(英文描述)
Let I I I be an interval of the real line and let f f f denote a real-valued, convex function defined on I I I. If x 1 , . . . , x n x_1, . . . , x_n x1,...,xn and y 1 , . . . , y n y_1, . . . , y_n y1,...,yn are numbers in I I I such that ( x 1 , . . . , x n ) (x_1, . . . , x_n) (x1,...,xn) majorizes ( y 1 , . . . , y n ) (y_1, . . . , y_n) (y1,...,yn), then
f ( x 1 ) + ⋯ + f ( x n ) ≥ f ( y 1 ) + ⋯ + f ( y n ) . {\displaystyle f(x_{1})+\cdots +f(x_{n})\geq f(y_{1})+\cdots +f(y_{n}).} f(x1)++f(xn)f(y1)++f(yn). (1)

Here majorization means that x 1 , . . . , x n x_1, . . . , x_n x1,...,xn and y 1 , . . . , y n y_1, . . . , y_n y1,...,yn satisfies x 1 ≥ x 2 ≥ ⋯ ≥ x n {\displaystyle x_{1}\geq x_{2}\geq \cdots \geq x_{n}} x1x2xn and y 1 ≥ y 2 ≥ ⋯ ≥ y n {\displaystyle y_{1}\geq y_{2}\geq \cdots \geq y_{n}} y1y2yn
and we have the inequalities
x 1 + ⋯ + x i ≥ y 1 + ⋯ + y i {\displaystyle x_{1}+\cdots +x_{i}\geq y_{1}+\cdots +y_{i}} x1++xiy1++yi for all i ∈ 1 , . . . , n − 1 i ∈ {1, . . . , n − 1} i1,...,n1.
and the equality x 1 + ⋯ + x n = y 1 + ⋯ + y n {\displaystyle x_{1}+\cdots +x_{n}=y_{1}+\cdots +y_{n}} x1++xn=y1++yn
If f   f  f is a strictly convex function, then the inequality (1) holds with equality if and only if we have x i = y i x_i = y_i xi=yi for all i ∈ 1 , . . . , n i ∈ {1, . . . , n} i1,...,n.

一道题:
− x ( x a − ( x − 1 ) a − ( x − 1 2 ) a + ( x − 3 2 ) a ) − ( x − 1 ) a + ( x − 3 2 ) a + ( 1 − 2 a − 1 ) ( ( x − 3 2 ) a − ( x − 1 2 ) a ) > 0 -x \left(x^a-(x-1)^a-\left(x-\frac{1}{2}\right)^a+\left(x-\frac{3}{2}\right)^a\right)-(x-1)^a \\+\left(x-\frac{3}{2}\right)^a+\left(1-2^{a-1}\right) \left(\left(x-\frac{3}{2}\right)^a-\left(x-\frac{1}{2}\right)^a\right)>0 x(xa(x1)a(x21)a+(x23)a)(x1)a+(x23)a+(12a1)((x23)a(x21)a)>0
此时有 x ≥ 2 x\ge 2 x2 − 1 < a < 0 -1<a<0 1<a<0 .

证明:
The inequality is written as f ( a , x ) + g ( a , x ) > 0 f(a, x) + g(a, x) > 0 f(a,x)+g(a,x)>0 where
f ( a , x ) = − x 1 + a + ( x − 1 ) 1 + a + ( x − 1 / 2 ) 1 + a − ( x − 3 / 2 ) 1 + a f(a, x) = - x^{1+a} + (x-1)^{1+a} + (x-1/2)^{1+a} - (x-3/2)^{1+a} f(a,x)=x1+a+(x1)1+a+(x1/2)1+a(x3/2)1+aand
g ( a , x ) = ( 1 / 2 − 2 a − 1 ) ( ( x − 3 / 2 ) a − ( x − 1 / 2 ) a ) . g(a, x) = (1/2 - 2^{a-1})((x-3/2)^a - (x-1/2)^a). g(a,x)=(1/22a1)((x3/2)a(x1/2)a).Clearly, g ( a , x ) > 0 g(a, x) > 0 g(a,x)>0. It suffices to prove that f ( a , x ) ≥ 0 f(a, x) \ge 0 f(a,x)0.
Since x ↦ − x 1 + a x \mapsto -x^{1+a} xx1+a is convex on ( 0 , ∞ ) (0, \infty) (0,), and ( x , x − 3 / 2 ) (x, x - 3/2) (x,x3/2) majorizes ( x − 1 / 2 , x − 1 ) (x-1/2, x-1) (x1/2,x1), by using Karamata inequality, we have f ( a , x ) ≥ 0 f(a, x) \ge 0 f(a,x)0. We are done.
2020年4月22日最后修改

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值