数列极限小结论的分析

1 数列绝对值
Prove that if lim ⁡ { a n } → a \lim \{a_n\}\to a lim{an}a then lim ⁡ { ∣ a n ∣ } → ∣ a ∣ \lim \{|a_n|\}\to|a| lim{an}a. Is the converse true?

Prove:
By definition, if lim ⁡ n → ∞ a n = a \lim_{n \rightarrow \infty} a_n=a nliman=a then for all ε > 0 \varepsilon>0 ε>0 there exists a N ∈ N N \in \mathbb{N} NN such that n ≥ N n \geq N nN implies ∣ a n − a ∣ ≤ ε |a_n-a| \leq \varepsilon anaε.

-We may also verify case-by-case that ∣ ∣ x ∣ − ∣ y ∣ ∣ ≤ ∣ x − y ∣ \big||x|-|y|\big| \leq |x-y| xyxy for all x , y ∈ R x,y \in \mathbb{R} x,yR. In particular, ∣ ∣ a n ∣ − ∣ a ∣ ∣ ≤ ∣ a n − a ∣ .     ( 1 ) \big||a_n|-|a|\big| \leq |a_n-a|. \,\,\, (1) anaana.(1)

Combining these yields the proof.

评注:反之,不正确! 如 ∣ ( − 1 ) n ∣ |(-1)^n| (1)n 极限是 1 1 1,但是 ( − 1 ) n (-1)^n (1)n 极限不存在,
但是如果 ∣ a n ∣ |a_n| an 极限是 0 0 0,能推出 a n a_n an 极限为 0,原因在于证明过程的 ( 1 ) (1) (1)不等式变成了等号., 即 ∣ ∣ a n ∣ − ∣ 0 ∣ ∣ = ∣ a n − 0 ∣ \big||a_n|-|0|\big| =|a_n-0| an0=an0.

2与子列极限关系
Prove that if the subsequences a 2 n a_{2n} a2n and a 2 n + 1 a_{2n+1} a2n+1 of a sequence a n a_n an of real numbers both converge to the same limit l l l, then a n a_n an converges to l l l.
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值