VSLAM预备知识 ICP PnP

本文深入探讨了视觉SLAM中的关键算法,包括3D-3D点匹配的ICP(Iterative Closest Point)方法,详细介绍了SVD求解过程和非线性优化。接着讨论了3D-2D点匹配的PnP(Pose from N Points)问题,提到了DLT(Direct Linear Transform)和P3P(Perspective-n-Point)算法。此外,还涵盖了三角测量和2D-2D对极几何,如基础矩阵和单应矩阵的应用,为理解视觉定位和重建奠定了理论基础。
摘要由CSDN通过智能技术生成

一、3D-3D:ICP

已知n个3D点,在两个坐标轴下的坐标分别为p_{i}p_{i}^{'},已匹配好,求外参sR,t。其中s为两个坐标系的尺度比,R为旋转矩阵,t为平移向量。

SVD方法:

存在关系 p_{i}=sRp_{i}^{'}+t

构建误差的最小二乘,

推导可得:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值