一、在关系型数据库中 join 是非常常见的操作,各种优化手段已经到了极致。在海量数据的环境下,不可避免的也会碰到这种类型的需求,例如在数据分析时需要连接从不同的数据源中获取到的数据。不同于传统的单机模式,在分布式存储的下采用 MapReduce 编程模型,也有相应的处理措施和优化方法。
本文对 Hadoop 中最基本的 join 方法进行简单介绍,这也是其它许多方法和优化措施的基础。文中所采用的例子来自于《 Hadoop in Action 》一书中的 5.2 节 。假设两个表所在的文件分别为Customers和Orders,以CSV格式存储在HDFS中。
1,Stephanie Leung,555-555-5555 2,Edward Kim,123-456-7890 3,Jose Madriz,281-330-8004 4,David Stork,408-555-0000 | 3,A,12.95,02-Jun-2008 1,B,88.25,20-May-2008 2,C,32.00,30-Nov-2007 3,D,25.02,22-Jan-2009 |
这里的Customer ID是连接的键,那么连接的结果:
1,Stephanie Leung,555-555-5555,B,88.25,20-May-2008 2,Edward Kim,123-456-7890,C,32.00,30-Nov-2007 3,Jose Madriz,281-330-8004,A,12.95,02-Jun-2008 3,Jose Madriz,281-330-8004,D,25.02,22-Jan-2009 |
回忆一下Hadoop中MapReduce中的主要几个过程:依次是读取数据分块,map操作,shuffle操作,reduce操作,然后输出结果。简单来说,其本质在于大而化小,分拆处理。显然我们想到的是将两个数据表中键值相同的元组放到同一个reduce结点进行,关键问题在于如何做到?具体处理方法是将map操作输出的key值设为两表的 连接键(如例子中的Customer ID) ,那么在shuffle阶段,Hadoop中默认的partitioner会将相同key值得map输出发送到同一个reduce结点。所以整个过程如下图所示:
这种方法称为Repartition Join,同时它进行join操作是在reduce阶段进行,也属于Reduce-side Join;在Hadoop中contrib目录下的datajoin就是采用的这种方法。
二、上一篇介绍了 Repartition Join 的基本思想,实践出真知,具体的实现中总是存在各种细节问题。下面我们通过具体的源码分析来加深理解。本文分析的是 Hadoop-0.20.2 版本的 datajoin 代码,其它版本也许会有变化,这里暂且不论。
参看源码目录下,共实现有 7 个类,分别是:
- ArrayListBackIterator.java
- DataJoinJob.java
- DataJoinMapperBase.java
- DataJoinReducerBase.java
- JobBase.java
- ResetableIterator.java
- TaggedMapOutput.java
源码比较简单,代码量小,下面对一些关键的地方进行分析:前面我们提到了 map 阶段的输出的 key 值的设定;然而在实现中,其value值也是另外一个需要考虑的地方,在不同的 reduce 结点进行 join 操作时,需要知道参与 join 的元组所属的表;解决方法是在 map 输出的 value 值中加入一个标记 (tag) ,例如上一篇例子中两表的tag 可以分别 customer 和 order (注:实际上,在reduce阶段可以直接分析两元组的结构就可以确定数据来源)。这也是 TaggedMapOutput.java 的来历。作为 Hadoop 的中间数据,必须实现 Writable 的方法,如下所示: