干货|遗传+禁忌混合算法(HA)算法求解柔性作业车间调度问题(FJSP)附java代码-第二部分

往期回顾:

干货|遗传+禁忌混合算法(HA)算法求解柔性车间调度问题(FJSP)附java代码-第一部分

在上一篇文章中,我们介绍了FJSP问题以及HA算法的GA部分。这一篇文章主要介绍嵌套在其中的Tabu Search部分。

Tabu部分原论文没有很详细的描述,因此很多内容是小编收集各方资料,查阅其他相关文献总结出的结论,小编自己编写了三个tabu search,在这里分别分享介绍一下。如有专门研究这块的同学,欢迎随时指点交流!

Tabu1-基于编码

在之前的文章中说过,算法对每一代子代的每一个个体,都需要decode成可行解,然后运用禁忌搜索优化解,再编码回GA编码,进入下一代。可想而知,如果tabu写的不好,算法的耗时肯定会很高。

论文中的tabu其实是以第二种为主体的。基于编码的tabu相对而言比较盲目,当初编写时也是基于试一试的心态。

前文提到,对一串合法的OS序列,无论进行怎样的交换、插入运算,都可以解码成可行解;对MS序列,在同一工件范围内任意交换顺序,也可以保证得到可行解。

因此,小编在代码中简单设计了两种邻域:

  1. 对相邻的OS编码进行交换操作;
  2. 对MS编码的每个位置分别采用GA中的变异操作。

swap很简单,再重复一下MS的变异:
在这里插入图片描述
随机选择MS中一半的数字,随机换为对应操作可以选择的某个机器。例如图中长度为6的MS String,随机选择三个位置,对O11而言,共有三个机器可选择,则随机选择1,2,3中一个数字替换掉原先的2。

邻域部分代码(开启了一个50%的采样):

for (int i = 0; i < chromosome.gene_OS.length - 1; i += 2) 
	for (int j = i + 1; j < chromosome.gene_OS.length; j += 2) 
		if(r.nextDouble() < 0.5)
			OSs.add(swap(chromosome.gene_OS, i, j));

for (int i = 0; i < chromosome.gene_MS.length; i++) 
	if(r.nextDouble() < 0.5){
		int[] MS = chromosome.gene_MS.clone();
		MSs.add(chromOps.machineSeqMutation(MS));
	}

结论:这个邻域设计的比较随意,但经过小编的测试后发现效果不佳,小编在这里建议大家不要使用基于编码的邻域搜索

Tabu2-基于析取图的k-insertion

析取图

对JSP和FJSP来说,除了用甘特图表示解意外,还有一个很重要的表示解的结构:析取图

在这里插入图片描述

析取图是一张有向图。图中的点表示工序,边代表工序加工的顺序。

边有两种类型,一种是machine arc(也叫disjunctive arc),由同一机器上的前一道工序指向相邻的后一道工序。图中彩线部分表示machine arc。另一种是job arc(也叫conjunction arc),由同一工件上的前一道工序指向相邻的后一道工序。图中黑色实现部分代表job arc。两种边分别表示machine 和job的两个约束,因此一个点最多引申出4条边。

除此之外,图中还有两个超级源点,起始点和终止点(图中的0号start和10号finish)。他们是虚拟的点,代表加工开始和结束。Start点只有job arc,分别连向每个工件的第一道工序;Finish 点也只有job arc,从每个工件的最后一道工序连接到此点。(要注意边的顺序!)

图中的边上没有权值,权值存放在点上,代表加工时间。起始、终止点加工时间为0。

读到这里大家应该能感受到,一幅图实际上已经代表了一个解。点(即工序)的加工开始、结束时间都可以通过最长路算法得出。整个schedule的最大makespan(加工时间)就是起始点到终止点的最长路距离。如果这幅图里没有,则解可行;否则为不可行解。

这里的最长路又称为critical path(关键路径),即图中粉色框框起的部分。

最长路的算法小编没有找到很好的资料,自以为可以用DFS写,如果在邻域算子后要进行全部工件starting time的更新,那么可以使用bellman-ford算法,这些在小编的代码里都有实现。

结论:很多JSP、FJSP论文的tabu search都是基于析取图进行的,因为可以使用图的特性,毕竟容易操作。

k-insertion

相较于JSP,小编能查到的FJSP的邻域较少,这一部分主要参考一篇2000年的论文 “Effective neighbourhood functions for the fexible job shop problem” ,讲解其中的k-insertion邻域。

k-insertion其实就是一个insert操作,简单来说就是将critical path中的每一个操作,分别插入到其他可加工机器的某个位置,形成新解。这里强调,无论什么邻域搜索,一定要在critical path上做文章,才容易改变解的makespan。

实际上,并不是一个机器上的所有位置都需要插入的。如果一道工序由于job边约束,加工时间在考前的位置,那么插入某台机器靠后的位置显然不会使加工时间缩短。考虑到这一点,我们只需要挑出可能使结果更优的位置,执行插入操作。

在这里插入图片描述
论文中对每个机器上的工序根据starting time(开始加工的时间)进行排序,然后根据公式计算出两个边界: L k , R k L_k, R_k LkRk。再通过二分查找找到这两个位置。经过证明,只有两者的并集(图中中间的部分)插入后可能优化结果。这里的计算公式需要定义一些新变量,难度不大但是不好讲清,想要深入研究的同学可以下载代码、论文进一步研究,这里暂时不多说了。

前面我们反复强调,我们的tabu是要嵌入到每一个个体中的,因此计算速度一定要快。如果对TS的每一个解都精确运算出makespan,速度会很慢(第一个tabu就是这样的)。因此,我们需要特殊的估值方法

论文中的估值是一个上界。只需要根据前文定义的一些变量进行简单的加减乘除运算即可得出,极大优化了时间复杂度。这里同样不多解释。

然而,在实现析取图的k-insertion后,小编发现自己实现的速度依旧很慢,嵌入个体后算法根本跑不动。因此小编尝试了一下GA和TS的并行操作,用GA的初始解进行TS操作,发现结果却是有优化,但是时间还是太久。小编目前也找不到代码资料,只能自行编写,因此陷入瓶颈。有了解这块的同学可以和小编进一步交流!

这里再提一句,JSP、FJSP的tabu禁忌表可以用插入或交换前后的的位置,制作一个二维表来表示,用单纯的解作为禁忌对象会拖慢速度。

结论:Tabu2效果不错,但是可能是因为析取图部分没有写好,时间容易爆炸。

Tabu3-基于甘特图的JSP N1邻域

前面的tabu2是一种FJSP的邻域结构,搜索的是插入不同机器的解空间。如果不插入不同机器呢?

很显然,问题转化为JSP。

因此,小编在咨询了一些专业人士后,打算尝试加入JSP的tabu search。

几个邻域的示意图

JSP的tabu邻域比FJSP多一些,比较知名的有N1,N4,N5,N6等邻域(参考:A tabu search algorithm with a new neighborhood structure for the job shop scheduling problem)。小编目前简单实现了N1的邻域,通过类似甘特图的形式作为解的结构。

在介绍N1之前还要提到一个critical block的概念。在critical path中,如果有若干个连续的工序是在同一机器上加工的,则称其为一个critical block。很多tabu邻域都是在critical block内进行操作,包括这里说的N1。

N1的邻域为:在所有critical block内,交换两个相邻工序在机器上的加工位置。

由于甘特图的形式表示解没有图的性质,因此计算makespan、更新starting time的方法和析取图中又有所不同。简单来说,需要像GA中查找空闲时间区间一样不断插入,然后更新时间。

简单实现后说下小编实现+测试后的结论:时间上勉强可以接受,不至于跑不出来;但是解的质量不够理想。但至少说明嵌入个体是可行的。

这里提供一个进一步改进的思路:将第三部分的JSP的tabu邻域和第二部分的k-insertion结合起来,因为我做第三部分的时候没有写成析取图,所以这部分没有做。结合之后还要将第二部分进一步改进,至少时间上要缩短,再嵌入到个体中。

Tabu部分大致就介绍到这里,剩下还会有一篇具体讲解小编实现的代码。讲解有些地方不够详细,要具体研究的小伙伴还是推荐好好研读论文。

参考

[1]Li, Xinyu , and L. Gao . “An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem.” International Journal of Production Economics 174.Apr.(2016):93-110.

[2]Zhang, Chao Yong , P. G. Li , and Y. R. Zailin Guan . “A tabu search algorithm with a new neighborhood structure for the job shop scheduling problem.” Computers & Operations Research 34.11(2007):3229-3242.

[3]Mastrolilli, Monaldo , and L. M. Gambardella . “Effective Neighbourhood Functions for the Flexible Job Shop Problem.” Journal of Scheduling 3.1(2015):3-20.

[4]Zhang, Guohui , L. Gao , and Y. Shi . “An effective genetic algorithm for the flexible job-shop scheduling problem.” Expert Systems with Applications 38.4(2011):3563-3573.

代码下载

扫描下方二维码,登录公众号【程序猿声】,输入【FJSPHA】不带【】即可免费获取相关代码!

也可以访问作者github下载对应代码:点击这里!

在这里插入图片描述

本文介绍了使用Matlab实现多目标灰狼优化算法(Multi-Objective Grey Wolf Optimizer,MOGWO)来求解柔性作业车间调度问题Flexible Job-Shop Scheduling Problem,FJSP)的方法。 1. 柔性作业车间调度问题 柔性作业车间调度问题是指在一台机器上,需要安排多个作业在多个工序上进行加工,每个作业需要在不同的工序上进行加工,每个工序需要一定的时间和资源,同时需要考虑不同的约束条件(如最早开始时间、最迟完成时间、作业间的优先关系等),目标是最小化完成所有作业的总时间或最小化机器的空闲时间。 2. 多目标灰狼优化算法 多目标灰狼优化算法是基于灰狼优化算法(Grey Wolf Optimizer,GWO)的多目标优化版本。该算法模拟了灰狼社会的行为,通过抓住“alpha”、“beta”和“delta”三个主导灰狼的行为来优化目标函数。多目标灰狼优化算法可以同时优化多个目标函数。 3. 求解柔性作业车间调度问题 求解柔性作业车间调度问题的过程可以分为以下几个步骤: (1)编写目标函数:将FJSP问题转化为目标函数,将多个目标函数合并成一个多目标函数。 (2)确定参数:确定算法的参数,如灰狼个数、最大迭代次数、交叉率等。 (3)初始化灰狼群体:根据问题的特性,初始化灰狼群体。 (4)灰狼优化过程:根据多目标灰狼优化算法,进行灰狼优化过程。 (5)结果分析:分析灰狼优化的结果,得到最优解。 4. Matlab实现 在Matlab中,可以使用以下代码实现MOGWO算法求解FJSP问题: % FJSP问题的目标函数 function f = FJSP(x) % x为决策变量,即作业的加工顺序 % 定义多个目标函数 f(1) = 计算完成所有作业的总时间 f(2) = 计算机器的空闲时间 % 将多个目标函数合并成一个多目标函数 f = [f(1) f(2)] end % MOGWO算法 function [bestx, bestf] = MOGWO(f, lb, ub, MaxIt, nPop, nObj, pCrossover, pMutation) % f为目标函数,lb和ub为决策变量的上下界,MaxIt为最大迭代次数,nPop为灰狼个数,nObj为目标函数个数,pCrossover和pMutation分别为交叉率和变异率 % 初始化灰狼群体 X = repmat(lb, nPop, 1) + rand(nPop, nObj).*(repmat(ub-lb, nPop, 1)); % 迭代优化过程 for it = 1:MaxIt % 计算适应度 F = zeros(nPop, nObj); for i = 1:nPop F(i,:) = f(X(i,:)); end % 更新最优解 [bestf, idx] = min(F); bestx = X(idx,:); % 更新灰狼位置 for i = 1:nPop % 计算灰狼位置 A = 2*rand(nObj,1)-1; C = 2*rand(nObj,1); D = abs(C.*bestx - X(i,:)); X1 = bestx - A.*D; % 交叉和变异 mask = rand(nObj,1) < pCrossover; X2 = X1; X2(~mask) = X(i,~mask); mask = rand(nObj,1) < pMutation; X3 = X2; X3(mask) = lb(mask) + rand(sum(mask),1).*(ub(mask)-lb(mask)); % 更新灰狼位置 X(i,:) = X3; end end end % 测试 % 假设有10个作业,每个作业需要在3个机器上进行加工 nJob = 10; nMachine = 3; % 初始化上下界 lb = zeros(1, nJob*nMachine); ub = ones(1, nJob*nMachine); % 假设最大迭代次数为100,灰狼个数为50,目标函数个数为2 MaxIt = 100; nPop = 50; nObj = 2; % 假设交叉率为0.8,变异率为0.3 pCrossover = 0.8; pMutation = 0.3; % 调用MOGWO算法求解FJSP问题 [bestx, bestf] = MOGWO(@FJSP, lb, ub, MaxIt, nPop, nObj, pCrossover, pMutation); % 输出结果 disp('Best Solution:'); disp(bestx); disp('Best Objective:'); disp(bestf);
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值