计算机视觉学习之路
文章平均质量分 83
zlsd21
这个作者很懒,什么都没留下…
展开
-
计算机视觉学习之路之tensorflow学习-02程序实现鸢尾花数据集分类
数据集回顾先回顾鸢尾花数据集,其提供了 150 组鸢尾花数据,每组包括鸢尾花的花萼长、花萼宽、花瓣长、花瓣宽 4 个输入特征,同时还给出了这一组特征对应的鸢尾花类别。类别包括狗尾鸢尾、杂色鸢尾、弗吉尼亚鸢尾三类, 分别用数字0、1、2 表示。使用此数据集代码如下:from sklearn.datasets import load_irisx_data = datasets.load_iris().data # 返回 iris 数据集所有输入特征y_data = datasets.load_iris(原创 2021-06-19 16:24:18 · 576 阅读 · 0 评论 -
计算机视觉学习之路之tensorflow学习-01基本概念与常用函数
框架中的基本概念tensor张量是多维数组,用阶表示张量的维数。0阶张量叫做标量,表示的是一个单独的数,如 123;1阶张量叫作向量,表示的是一个一维数组如[1,2,3];2阶张量叫作矩阵,表示的是一个二维数组,它可以有 i 行 j列个元素,每个元素用它的行号和列号共同索引到,如在[[1,2,3],[4,5,6],[7,8,9]]中,2 的索引即为第 0 行第 1 列;注:张量的阶数与方括号的数量相同,0 个方括号即为 0 阶张量,1 个方括号即为 1 阶张量。故张量可以表示0 阶到 n原创 2021-06-19 15:36:49 · 199 阅读 · 0 评论 -
计算机视觉学习之路04-相机模型与相机畸变
坐标系针孔相机模型存在四个坐标系:世界坐标系、摄像机坐标系、图像物理坐标系和图像像素坐 标系。假设:• 世界坐标系的坐标为Pw(Xw,Yw,Zw),• 对应的摄像机坐标系坐标为Po(x,y,z),• 对应的图像物理坐标系的坐标为P’(x’,y’),• 对应的图像像素坐标系的坐标为p(u,v)。名称定义世界坐标系是客观三维世界的绝对坐标系,也称客观坐标系。就是物体在真实世界中的坐标。 世界坐标系是随着物体的大小和位置变化的,单位是长度单位。相机坐标系以相机的光心为坐原创 2021-06-17 10:07:04 · 431 阅读 · 0 评论 -
计算机视觉学习之路03-特征选择与特征提取
1.特征选择定义: 从N个特征中选择其中M(M<=N)个子特征,并且在M个子特征中,准则函数可以达到最优解。目的: 选择尽可能少的子特征,模型的效果不会显著下降,并且结果的类别分布尽可能的接近真实的类别分别。1.1 特征在一些实际问题中,我们得到的样本数据都是多个维度的,即一个样本是用多个特征来表征的。比如在预测房价的问题中,影响房价y的因素有房子面积x1、卧室数量x2等,我们得到的样本数据就是(x1,x2)原创 2021-05-09 15:46:33 · 1084 阅读 · 0 评论 -
计算机视觉学习之路02-图像和视频
图像和视频1.图像提到图像我们就不得不提到关于图像的若干专业词汇名词解释数字图像计算机保存的图像都是一个一个的像素点,称为数字图像。像素是分辨率的基本单位,是构成位图的基本单元,每个像素都有自己的颜色分辨率(解析度)图像分辨率就是单位英寸内的像素点数。单位为PPI(Pixels Per Inch)灰度表示图像像素明暗程度的数值,也就是黑白图像中点的颜色深度。范围一般为0-255。白色为 255,黑色为0。色调色调是指图像的相对明暗程度,在彩色图像上原创 2021-05-08 13:07:32 · 732 阅读 · 1 评论 -
计算机视觉学习之路01-人工智能与计算机视觉简介
人工智能与计算机视觉人工智能简介什么是人工智能?人工智能就是通过机器来模拟人类认知能力的技术人工智能最核心的能力就是根据给定的输入做出预判或预测。人工智能的三大要素数据,算法,算力数据 : 顾名思义,人工智能就是靠数据的训练来完成智能的预测算法 : 当你交给计算机一个任务的时候,不但要告诉它做什么,还要告诉他怎么做。怎么做的一系列指令就叫做算法。算力 : 高性能芯片组成的计算能力人工智能关系圈人工智能包含机器学习但不完全是机器学习,除机器学习以外还有由人工编程指定逻辑和算原创 2021-05-07 16:20:53 · 850 阅读 · 1 评论