[行人重识别论文阅读]Meta Batch-Instance Normalization for Generalizable Person Re-Identification

论文地址:https://arxiv.org/abs/2011.14670
论文代码:https://github.com/bismex/MetaBIN.
预备知识:meta-learning[李宏毅老师的讲解笔记]

1 文章思想

BN(batch normalization):图像增强方法,相对于IN来说是增强了不同域间的差异
IN( instance normalization):DG(Domain generation)中常用的方法,用来消除域之间的风格差异

我们可以从描述中看出BN与IN是对立的存在,单独使用BN与IN会分别带来Under-style-normalization以及Over-style-normalization问题如下图所示:
在这里插入图片描述
从图中我们看出BN过度分离了domain A 与 domain B ,而IN则使domain A 与 domain B 靠的太近了,但是我们如果能很好的结合BN以及IN,就会很好避免上述的两种问题。这便是我们此篇论文需要讨论的问题,为此此篇论文提出了一个新的方法,我们叫做MetaBIN(Meta Batch-Instance Normalization)。

2 MetaBIN

MetaBIN的核心思想就是利用meta-learning的思想,模拟下图过程
在这里插入图片描述
通过对BN与I

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值