论文地址:https://arxiv.org/abs/2011.14670
论文代码:https://github.com/bismex/MetaBIN.
预备知识:meta-learning[李宏毅老师的讲解笔记]
1 文章思想
BN(batch normalization):图像增强方法,相对于IN来说是增强了不同域间的差异
IN( instance normalization):DG(Domain generation)中常用的方法,用来消除域之间的风格差异
我们可以从描述中看出BN与IN是对立的存在,单独使用BN与IN会分别带来Under-style-normalization以及Over-style-normalization问题如下图所示:

从图中我们看出BN过度分离了domain A 与 domain B ,而IN则使domain A 与 domain B 靠的太近了,但是我们如果能很好的结合BN以及IN,就会很好避免上述的两种问题。这便是我们此篇论文需要讨论的问题,为此此篇论文提出了一个新的方法,我们叫做MetaBIN(Meta Batch-Instance Normalization)。
2 MetaBIN
MetaBIN的核心思想就是利用meta-learning的思想,模拟下图过程

通过对BN与I

最低0.47元/天 解锁文章
905

被折叠的 条评论
为什么被折叠?



