RNN,LSTM,GRU自己笔记

RNN的前向传播:

这里是一张清理后的神经网络示意图,和我之前提及的一样,一般开始先输入,它是一个零向量。接着就是前向传播过程,先计算激活值,然后再计算。

我将用这样的符号约定来表示这些矩阵下标,举个例子,第二个下标意味着要乘以某个类型的量,然后第一个下标表示它是用来计算某个类型的变量。同样的,可以看出这里的乘上了某个类型的量,用来计算出某个类型的量。

循环神经网络用的激活函数经常是tanh,不过有时候也会用ReLU,但是tanh是更通常的选择,我们有其他方法来避免梯度消失问题,我们将在之后进行讲述。选用哪个激活函数是取决于你的输出,如果它是一个二分问题,那么我猜你会用sigmoid函数作为激活函数,如果是类别分类问题的话,那么可以选用softmax作为激活函数。不过这里激活函数的类型取决于你有什么样类型的输出,对于命名实体识别来说只可能是0或者1,那我猜这里第二个激活函数可以是sigmoid激活函数。

更一般的情况下,在时刻,

所以这些等式定义了神经网络的前向传播,你可以从零向量开始,然后用和来计算出和,然后用和一起算出和等等,像图中这样,从左到右完成前向传播。

现在为了帮我们建立更复杂的神经网络,我实际要将这个符号简化一下,我在下一张幻灯片里复制了这两个等式(上图编号1所示的两个等式)。

RNN前向传播示意图:

nn-

 

当出现梯度爆炸的情况时,可以使用梯度修剪的方法,梯度修剪的意思就是观察你的梯度向量,如果它大于某个阈值,缩放梯度向量,保证它不会太大,这就是通过一些最大值来修剪的方法。

 

GRU:

 

 

LSTM:

有更新门update,遗忘门forget,和输出门 output组成。

LSTM前向传播图:

ST

LSTM反向传播计算:

门求偏导:


 

下面具体对LSTM的内部结构来进行剖析。

首先使用LSTM的当前输入 x^t 和上一个状态传递下来的 h^{t-1} 拼接训练得到四个状态。

其中, z^fz^iz^o 是由拼接向量乘以权重矩阵之后,再通过一个 sigmoid 激活函数转换成0到1之间的数值,来作为一种门控状态。而 z 则是将结果通过一个 tanh 激活函数将转换成-1到1之间的值(这里使用 tanh 是因为这里是将其做为输入数据,而不是门控信号)。

下面开始进一步介绍这四个状态在LSTM内部的使用。(敲黑板)

\odot 是Hadamard Product,也就是操作矩阵中对应的元素相乘,因此要求两个相乘矩阵是同型的。 \oplus 则代表进行矩阵加法。

 

LSTM内部主要有三个阶段:

1. 忘记阶段。这个阶段主要是对上一个节点传进来的输入进行选择性忘记。简单来说就是会 “忘记不重要的,记住重要的”。

具体来说是通过计算得到的 z^f (f表示forget)来作为忘记门控,来控制上一个状态的 c^{t-1} 哪些需要留哪些需要忘。

2. 选择记忆阶段。这个阶段将这个阶段的输入有选择性地进行“记忆”。主要是会对输入 x^t 进行选择记忆。哪些重要则着重记录下来,哪些不重要,则少记一些。当前的输入内容由前面计算得到的 z 表示。而选择的门控信号则是由 z^i (i代表information)来进行控制。

将上面两步得到的结果相加,即可得到传输给下一个状态的 c^t 。也就是上图中的第一个公式。

3. 输出阶段。这个阶段将决定哪些将会被当成当前状态的输出。主要是通过 z^o 来进行控制的。并且还对上一阶段得到的 c^o 进行了放缩(通过一个tanh激活函数进行变化)。

与普通RNN类似,输出 y^t 往往最终也是通过 h^t 变化得到。

以上,就是LSTM的内部结构。通过门控状态来控制传输状态,记住需要长时间记忆的,忘记不重要的信息;而不像普通的RNN那样只能够“呆萌”地仅有一种记忆叠加方式。对很多需要“长期记忆”的任务来说,尤其好用。

 

 

Deep RNN:

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值