m堆石子,两人轮流取.只能在1堆中取.取完者胜.先取者负输出No.先取者胜输出Yes,然后输出怎样取子.例如5堆 5,7,8,9,10先取者胜,先取者第1次取时可以从有8个的那一堆取走7个剩下1个,也可以从有9个的中那一堆取走9个剩下0个,也可以从有10个的中那一堆取走7个剩下3个.
Input
输入有多组.每组第1行是m,m<=200000. 后面m个非零正整数.m=0退出.
Output
先取者负输出No.先取者胜输出Yes,然后输出先取者第1次取子的所有方法.如果从有a个石子的堆中取若干个后剩下b个后会胜就输出a b.
Sample Output.
Sample Input
2
45 45
3
3 6 9
5
5 7 8 9 10
0
Sample Output
No
Yes
9 5
Yes
8 1
9 0
10 3
题解:必败情况直接输出No,如果必胜情况要输出方案。必胜情况时,要留给对手必败情况,所以只要求出其它堆的异或值就好了,因为两个相同的数异或以后才是0,所以k赋成其他堆的异或值,和m[i]比较就行。
#include<stdio.h>
int m[200000];
int main()
{
int n,k, i, s;
while(scanf("%d",&n)!=EOF)
{
if( n==0 )
break;
s=0;
for(i=0; i<n; i++)
{
scanf("%d", &m[i]);
s ^= m[i];
}
if( s==0 )
printf("No\n");
else
{
printf("Yes\n");
for(i=0; i<n; i++)
{
k=s^m[i];
if( k<m[i] )
printf("%d %d\n", m[i], k);
}
}
}
return 0;
}