TinyBERT: Distilling BERT for Natural Language Understanding (EMNLP 2020)

论文地址:https://arxiv.org/pdf/1909.10351.pdf?trk=public_post_comment-text

代码地址:Pretrained-Language-Model/TinyBERT at master · huawei-noah/Pretrained-Language-Model · GitHub

0、蒸馏transformer模型的推荐文献(以Bert为例)

SKDBert(AAAI-2023)(多教师蒸馏+随机采样分布)✖️

Tinybert (EMNLP 2020) (指定跨层蒸馏)√

MobileBERT(ACL 2020)(体积小)√

PKDBert (2019) 更浅,hidden states 在多个中间层上的知识传输,教师模型经过任务优化微调

DistilBert(NeurIPS 2019) 深度减半

MiniLM (NeurIPS 2020)

SqueezeBERT(2020)(多层分组卷积)

Internal KD(AAAI 2020) (指定跨层蒸馏)

一、Tinybert

Tinybert (EMNL 2020) (指定跨层蒸馏) √(embedding层,attn和mlp分别做mse loss)

Tinybert > DistilBert,PKDBert | MobileBERT(24层)

跨层方法:

-> TinyBERT6 g(m) = 2 × m

-> TinyBERT4 g(m) = 3 × m

蒸馏目标:L attnL hidnL embd:MSE loss;L pred,CE loss

蒸馏阶段:two-stage learning -> pre-training-then-fine-tuning

GD (General Distillation) √

TD (Task-specific Distillation)

DA (Data Augmentation)

消融实验结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值