
python
文章平均质量分 81
普通网友
这个作者很懒,什么都没留下…
展开
-
Python深度学习技术进阶篇|Transformer模型详解
3、自然语言处理(NLP)领域的Transformer模型:BERT、GPT-1 / GPT-2 / GPT-3 / GPT-3.5 / GPT-4(模型的总体架构、输入和输出形式、预训练目标、预训练数据的选择和处理、词嵌入方法、GPT系列模型的改进与演化、……2.两阶段(Two-stage)目标检测算法:R-CNN、Fast R-CNN、Faster R-CNN(RCNN的工作原理、Fast R-CNN和Faster R-CNN的改进之处 )。2.图的基本概念和表示(图的基本组成:节点、边、属性;原创 2023-12-28 17:17:20 · 1179 阅读 · 0 评论 -
一文了解如何获取GPT4账号及AI绘图应用
1.1 AIGC课程概述1.2 AIGC技术发展1.3 人工智能基本概念1.4 人工智能发展史1.5 人工智能技术应用场景介绍1.6 (动手练习)ChatGPT官网使用方法1.7 (动手练习)ChatGPT国内使用方法1.8 (动手练习)ChatGPT的API使用方法2.1 AI算法是如何进行训练的2.2 如何评估模型效果2.3 深度学习常用算法介绍2.4 GPT1-3模型介绍2.5 强化学习和InstructGPT模型介绍2.6 RLHF人类反馈强化学习介绍。原创 2023-10-17 15:48:17 · 332 阅读 · 0 评论 -
掌握Python机器学习:空间模拟与时间预测的实战指南
了解机器学习的发展历史、计算原理、基本定义,熟悉机器学习方法的分类,常用机器学习方法,以及模型的评估与选择;熟悉数据预处理的流程,掌握python程序包的使用;理解机器学习在生态水文中的应用,掌握机器学习模型构建方法,学会构建机器学习模型用于地表参数的空间模拟与时间预测,并掌握生态水文过程分析。原创 2023-10-12 17:53:39 · 220 阅读 · 0 评论 -
AI人工智能实践技术全面指南:从基础知识到前沿应用
人工智能(Artificial Intelligence),英文缩写为AI。[24] 它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是新一轮科技革命和产业变革的重要驱动力量。人工智能是智能学科重要的组成部分,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。原创 2023-10-11 11:43:58 · 279 阅读 · 0 评论 -
什么是GPT,初学者怎么使用并掌握Chat GPT工具
例如在科研编程、绘图领域: 1、编程建议和示例代码: 无论你使用的编程语言是Python、R、MATLAB还是其他语言,都可以为你提供相关的代码示例。2、数据可视化: 生成各种类型的数据可视化图表,如折线图、柱状图、散点图、饼图、热力图等。3、统计分析: 描述统计、假设检验、回归分析等,提供相关的建议和示例代码,帮助你理解和解释数据。7、科研方法论: 可以讨论和介绍科研的方法论,包括实验设计、数据采集、结果解释和报告撰写等方面的建议。13.14 (动手练习)Midjourney的参数和设置介绍。原创 2023-10-06 14:19:10 · 1182 阅读 · 0 评论 -
AI绘图:GPT4技术的艺术化呈现与无限可能
例如在科研编程、绘图领域: 1、编程建议和示例代码: 无论你使用的编程语言是Python、R、MATLAB还是其他语言,都可以为你提供相关的代码示例。2、数据可视化: 生成各种类型的数据可视化图表,如折线图、柱状图、散点图、饼图、热力图等。3、统计分析: 描述统计、假设检验、回归分析等,提供相关的建议和示例代码,帮助你理解和解释数据。7、科研方法论: 可以讨论和介绍科研的方法论,包括实验设计、数据采集、结果解释和报告撰写等方面的建议。15.5 (动手练习)使用Inpainting进行图像的局部重绘。原创 2023-10-06 14:05:46 · 434 阅读 · 0 评论 -
AI绘图:GPT4技术的艺术化呈现与无限可能
例如在科研编程、绘图领域: 1、编程建议和示例代码: 无论你使用的编程语言是Python、R、MATLAB还是其他语言,都可以为你提供相关的代码示例。2、数据可视化: 生成各种类型的数据可视化图表,如折线图、柱状图、散点图、饼图、热力图等。3、统计分析: 描述统计、假设检验、回归分析等,提供相关的建议和示例代码,帮助你理解和解释数据。7、科研方法论: 可以讨论和介绍科研的方法论,包括实验设计、数据采集、结果解释和报告撰写等方面的建议。13.14 (动手练习)Midjourney的参数和设置介绍。原创 2023-10-03 20:22:50 · 299 阅读 · 0 评论 -
GPT的优势和GPT缺点
GPT采用自监督学习的方式进行预训练,可以利用大量的文本语料库进行训练,进一步提高模型的自然语言理解和生成能力。随着训练的深入,GPT技术的语言生成质量也将不断提升。只能实现单向文本生成:与一些双向解码器(如BERT)不同,GPT采用单向的解码器,只能利用前面的上下文信息进行生成,无法利用后面的文本信息,因此其生成文本的连贯性和逻辑性可能不如双向解码器。总之,GPT技术是一项非常有用的人工智能技术,它具有极高的语言生成能力和自我训练能力,广泛应用于自然语言处理领域,并且在未来还将拥有更加广泛的应用前景。原创 2023-10-03 20:23:08 · 1348 阅读 · 0 评论 -
都在说GPT,如何学习并掌握GPT1-4模型运用
例如在科研编程、绘图领域: 1、编程建议和示例代码: 无论你使用的编程语言是Python、R、MATLAB还是其他语言,都可以为你提供相关的代码示例。3、统计分析: 描述统计、假设检验、回归分析等,提供相关的建议和示例代码,帮助你理解和解释数据。4、机器学习和数据挖掘: 可以为你提供相关的算法介绍、模型建立和调参建议,以及示例代码。7、科研方法论: 可以讨论和介绍科研的方法论,包括实验设计、数据采集、结果解释和报告撰写等方面的建议。15.5 (动手练习)使用Inpainting进行图像的局部重绘。原创 2023-09-07 16:22:29 · 315 阅读 · 0 评论 -
如何使用GPT引领前沿与应用突破之GPT4科研实践技术与AI绘图
例如在科研编程、绘图领域: 1、编程建议和示例代码: 无论你使用的编程语言是Python、R、MATLAB还是其他语言,都可以为你提供相关的代码示例。2、数据可视化: 生成各种类型的数据可视化图表,如折线图、柱状图、散点图、饼图、热力图等。3、统计分析: 描述统计、假设检验、回归分析等,提供相关的建议和示例代码,帮助你理解和解释数据。7、科研方法论: 可以讨论和介绍科研的方法论,包括实验设计、数据采集、结果解释和报告撰写等方面的建议。13.14 (动手练习)Midjourney的参数和设置介绍。原创 2023-09-04 18:30:42 · 810 阅读 · 0 评论 -
基于PyTorch深度学习遥感影像地物分类与目标检测、分割及遥感影像问题深度学习优化
随着小卫星星座的普及,对地观测已具备3次以上的全球覆盖能力,遥感影像也不断被更深入的应用于矿产勘探、精准农业、城市规划、林业测量、军事目标识别和灾害评估中。深度卷积网络采用“端对端”的特征学习,通过多层处理机制揭示隐藏于数据中的非线性特征,能够从大量训练集中自动学习全局特征(这种特征被称为“学习特征”),是其在遥感影像自动目标识别取得成功的重要原因,也标志特征模型从手工特征向学习特征转变。3. 目标检测模型的评估方案,包括正确率,精确率,召回率,mAP等。(2)讲解数据集的制作过程,包括数据的存储和处理。原创 2023-08-24 18:11:58 · 1394 阅读 · 0 评论 -
Python集成学习算法教程
Python语法和动态类型,以及解释型语言的本质,使它成为多数平台上写脚本和快速开发应用的编程语言, 随着版本的不断更新和语言新功能的添加,逐渐被用于独立的、大型项目的开发。机器学习是人工智能的基础,因此,掌握常用机器学习算法的工作原理,并能够熟练运用Python建立实际的机器学习模型,是开展人工智能相关研究的前提和基础。Python在各个编程语言中比较适合新手学习,Python解释器易于扩展,可以使用C语言或C++(或者其他可以通过C调用的语言)扩展新的功能和数据类型。(2)决策树与随机森林模型。原创 2023-08-23 18:02:04 · 176 阅读 · 0 评论 -
python从入门到精通——完整教程
5、PyTorch常用工具包及API简介:张量Tensor的定义、属性、创建、运算、索引与切片、torchvision(transforms、datasets、model)、torch.nn、torch.optim、torch.utils(Dataset、DataLoader)1、科技论文结构解析(Title、Abstract、Keywords、Introduction、Materials & Methods、Results、Discussion、Conclusion、References)原创 2023-08-21 11:46:58 · 1178 阅读 · 0 评论 -
如何快速掌握Python 数据挖掘与机器学习
机器学习是人工智能的基础,因此,掌握常用机器学习算法的工作原理,并能够熟练运用Python建立实际的机器学习模型,是开展人工智能相关研究的前提和基础。1、遗传算法(Genetic Algorithm, GA)的基本原理(以遗传算法为代表的群优化算法的基本思想是什么?随机森林的本质是什么?3、Python基础(数据类型和变量、字符串和编码、list和tuple、条件判断、循环、函数的定义与调用等)7、坐标轴高阶应用(共享绘图区域的坐标轴、坐标轴刻度样式设置、控制坐标轴的显示、移动坐标轴的位置)原创 2023-05-29 18:16:52 · 463 阅读 · 0 评论 -
MATLAB助力生态环境时空数据分析【免费教程】
MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版本中也加入了对C,FORTRAN,C++,JAVA的支持。朱老师(副教授)∶劳伦斯伯克利国家实验室/科罗拉多州立大学博士后、长期从事生态遥感监测、湿地碳循环、生态模型、全球变化生态学等研究,基于无人机在生态环境中的应用具有丰富实践项目经验。原创 2023-03-27 17:52:02 · 649 阅读 · 0 评论 -
PyTorch机器学习与深度学习技术方法与案例实践应用
过拟合(Overfitting)与欠拟合(Underfitting)、泛化性能评价指标的设计、样本不平衡问题、模型评价与模型选择(奥卡姆剃刀定律)等)1、BP神经网络的基本原理(人工神经网络的分类有哪些?6、科学计算模块库(Numpy的安装;5、卷积神经网络调参技巧(卷积核尺寸、卷积核个数、移动步长、补零操作、池化核尺寸等参数与特征图的维度,以及模型参数量之间的关系是怎样的?4、张量(Tensor)的运算(加法、减法、矩阵乘法、哈达玛积(element wise)、除法、幂、开方、指数与对数、近似、裁剪)原创 2023-03-22 17:32:47 · 422 阅读 · 0 评论 -
【免费教程】 基于MATLAB图像处理基础及BP神经网络人脸朝向识别
MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。郁磊老师,副教授,主要从事MATLAB 编程、机器学习与数据挖掘、数据可视化和软件开发、生理系统建模与仿真、生物医学信号处理,具有丰富的实战应用经验,主编《MATLAB智能算法30个案例分析》、《MATLAB神经网络43个案例分析》相关著作。原创 2023-03-22 17:32:55 · 258 阅读 · 0 评论 -
如何熟练掌握Python在气象水文中的数据处理及绘图【免费教程】
Python语法和动态类型,以及解释型语言的本质,使它成为多数平台上写脚本和快速开发应用的编程语言, 随着版本的不断更新和语言新功能的添加,逐渐被用于独立的、大型项目的开发。陈老师,副研究员,来自重点高校及科研院所一线科研人员,长期从事气象水文、陆面水文模型及区域气候模拟研究,主持多项国家级科研项目,第一作者发表科研论文20余篇。Python解释器易于扩展,可以使用C语言或C++(或者其他可以通过C调用的语言)扩展新的功能和数据类型。希望这里面有适合的学习内容,同时,我也希望这篇文章的内容对你有所帮助。原创 2023-02-15 17:07:12 · 612 阅读 · 0 评论 -
Python实现的深度学习技术在水文水质领域应用
在水文水环境领域,基于神经网络的深度学习方法则能弥补上述不足,它能自动寻找输入和输出数据之间的内在关联,不需要人工显式地给出原理,直接由算法在数据中学习评价和预测规则,适合当前大数据背景下的多种应用,且近年来深度学习技术在水文水环境领域亦取得了丰硕的研究成果。本数据集共有203张图片,共5个类别。随着信息技术的发展,近十几年来,我国各大流域累计的水文、气象、水环境数据逐渐增多,许多学者和研究人员开始意识到这些数据的潜在价值,纷纷开展基于深度学习模型的水文预报、水质评价和预测的研究,目前也取得了丰硕的成果。原创 2022-12-21 17:01:20 · 1738 阅读 · 0 评论 -
MATLAB 2021b的机器学习、深度学习
1、深度学习与传统机器学习的区别与联系(神经网络的隐含层数越多越好吗?2、自编码器的变种(栈式自编码器、稀疏自编码器、去噪自编码器、卷积自编码器、掩码自编码器等)及其工作原理。为什么可以迁移学习?3、调参技巧(参数初始化、数据预处理、数据扩增、批量归一化、超参数优化、网络正则化等)2、优化算法(梯度下降、随机梯度下降、小批量随机梯度下降、动量法、Adam等)2、文件导入:mat、txt、xls、csv、jpg、wav、avi等格式。1. 支持向量机的基本原理(支持向量的本质、核函数的意义、SVM的启示等)原创 2022-11-23 14:53:21 · 946 阅读 · 0 评论 -
如何熟练掌握MATLAB机器学习、深度学习在图像中的处理
3、LeNet、AlexNet、Vgg-16/19、GoogLeNet、ResNet等经典深度神经网络的区别与联系。1、深度学习与传统机器学习的区别与联系(神经网络的隐含层数越多越好吗?5、预训练模型(Alexnet、Vgg-16/19、GoogLeNet、ResNet等)的下载与安装。2、图像的常见格式及读写(彩色图像、灰度图像、二值图像等)3、数据预处理(归一化、异常值剔除、数据扩增技术等)5、数字图像的几何变换(平移、镜像、缩放、旋转等)五、生成式对抗网络(GAN)及其在图像处理中的应用。原创 2022-11-22 16:05:59 · 1519 阅读 · 0 评论 -
MATLAB近红外光谱分析技术
1、主成分分析(PCA)、偏最小二乘(PLS)的基本原理(PCA与PLS的区别与联系;1、深度学习与传统机器学习的区别与联系(神经网络的隐含层数越多越好吗?2、BP神经网络参数的优化(隐含层神经元个数、学习率、初始权值和阈值等如何设置?3、MATLAB文件读写(mat、txt、xls、csv、jpg、wav、avi等格式)二。4、案例演示:一维卷积神经网络的MATLAB实现(基于卷积神经网络的近红外光谱建模)3、值得研究的若干问题(欠拟合与过拟合、泛化性能评价指标的设计、样本不平衡问题等)原创 2022-11-22 15:42:57 · 2546 阅读 · 0 评论 -
PyTorch深度学习
7、PyTorch常用工具包及API简介(torchvision(transforms、datasets、model)、torch.nn、torch.optim、torch.utils(Dataset、DataLoader))4、张量(Tensor)的运算(加法、减法、矩阵乘法、哈达玛积(element wise)、除法、幂、开方、指数与对数、近似、裁剪)CNN提取的特征是怎样的?2、张量(Tensor)的常用属性与方法(dtype、device、layout、requires_grad、cuda等)原创 2022-11-21 15:04:45 · 634 阅读 · 0 评论 -
GeoDa与R语言的空间数据回归
空间数据是常见的数据形式之一,因此空间数据回归也是最常用的方法之一。由于空间数据之间往往有相关性,它们不满足经典统计学的数据独立性假设,所以回归的理论和建模方式与普通回归模型相比既陌生又复杂。GeoDa与R语言是建立空间回归模型最合适的软件;尤其是GeoDa提供了用户友好的界面,是空间回归方法最方便的建模软件。1.空间滞后模型:二阶段估计与极大似然法。1.非空间模型的空间格局模型:原理与操作。2.空间的局域相关与全局相关度量。2.基于空间模型的空间格局模型。2.非空间的回归诊断。2.矩阵指数空间模型。原创 2022-11-17 16:04:11 · 1599 阅读 · 0 评论 -
R语言结构方程模型(SEM)在生态学领域中的实践
结构方程模型(Sructural Equation Model)是一种建立、估计和检验研究系统中多变量间因果关系的模型方法,它可以替代多元回归、因子分析、协方差分析等方法,利用图形化模型方式清晰展示研究系统中变量间的因果网络关系,是近年来地学、生态、进化、环境、医学、社会、经济领域中应用十分广泛的统计方法。(3) 案例1:气候及生态位重叠程度对田鼠物种丰富度影响:模型比较、直接和间接效应计算(blavaan)(4) 案例2:火烧后对植被恢复影响因素-模型拟合、模型比较和评估(brms)原创 2022-10-28 16:29:23 · 2339 阅读 · 0 评论 -
熟练掌握R语言的Meta分析全流程和不确定性分析,并结合机器学习等方法讲解Meta分析在文献大数据的延伸应用
本次针对Meta分析原理、公式、操作步骤及结果分析,进阶应用进行详细解析,结合多个例子,熟练掌握Meta分析全流程和不确定性分析,并结合机器学习等方法讲解Meta分析在文献大数据的延伸应用。从自编程计算到调用Meta包(meta、metafor、dmetar、esc、metasens、metamisc、meta4diag、gemtc、robvis、netmeta、brms等),全程分析如何进行meta计算、meta诊断、贝叶斯meta、网状meta、亚组分析、meta回归及作图。原创 2022-10-28 11:45:48 · 805 阅读 · 0 评论