python
文章平均质量分 85
zmjia111
这个作者很懒,什么都没留下…
展开
-
全流程Python编程、机器学习与深度学习实践技术应用
1、深度学习框架概述(PyTorch、Tensorflow、Keras等)2、PyTorch简介(PyTorch的版本、动态计算图与静态计算图、PyTorch的优点)3、PyTorch的安装与环境配置(Pip vs. Conda包管理方式、验证是否安装成功、CPU版与GPU版的安装方法)原创 2024-10-05 10:52:53 · 2076 阅读 · 1 评论 -
Python与Biome-BGC:生态模型分析的未来趋势
掌握Python编程的基础知识与技巧、特征工程(数据清洗、变量降维、特征选择、群优化算法)、回归拟合(线性回归、BP神经网络、极限学习机)、分类识别(KNN、贝叶斯分类、支持向量机、决策树、随机森林、AdaBoost、XGBoost与LightGBM等)、聚类分析(K均值、DBSCAN、层次聚类)、关联分析(关联规则、协同过滤、Apriori算法)的基本原理及Python代码实现方法。原创 2024-08-29 09:11:18 · 682 阅读 · 0 评论 -
Python深度学习:AI技术发展的新引擎
近年来,伴随着以卷积神经网络(CNN)为代表的深度学习的快速发展,人工智能迈入了第三次发展浪潮,AI技术在各个领域中的应用越来越广泛。原创 2024-08-28 10:20:59 · 1283 阅读 · 0 评论 -
Python在地球科学中的跨学科研究方法论
Python是功能强大、免费、开源,实现面向对象的编程语言,Python能够运行在Linux、Windows、Macintosh、AIX操作系统上及不同平台(x86和arm),Python简洁的语法和对动态输入的支持,再加上解释性语言的本质,使得它在大多数平台上的许多领域都是一个理想的脚本语言,特别适用于快速的应用程序开发。Python具有丰富和强大的库,能够把用其他语言制作的各种模块(尤其是C/C++)很轻松地联结在一起。原创 2024-07-19 08:46:14 · 648 阅读 · 0 评论 -
基于PyTorch深度学习技术及实践应用
1、深度学习框架概述(PyTorch、Tensorflow、Keras等)2、PyTorch简介(PyTorch的版本、动态计算图与静态计算图机制、PyTorch的优点)3、PyTorch的安装与环境配置(Pip vs. Conda包管理方式、验证是否安装成功)原创 2024-07-03 17:29:24 · 1029 阅读 · 0 评论 -
地质灾害风险评价的自动化:GIS与Python的解决方案
地质灾害是指全球地壳自然地质演化过程中,由于地球内动力、外动力或者人为地质动力作用下导致的自然地质和人类的自然灾害突发事件。由于降水、地震等自然作用下,地质灾害在世界范围内频繁发生。我国除滑坡灾害外,还包括崩塌、泥石流、地面沉降等各种地质灾害,具有类型多样、分布广泛、危害性大的特点。地质灾害危险性评价着重于根据多种影响因素和区域选择来评估在某个区域中某个阶段发生的地质灾害程度。以此预测和分析未来某个地形单位发生地质灾害的可能性。原创 2024-05-30 10:57:51 · 1040 阅读 · 0 评论 -
气象预测新篇章:Python人工智能的变革力量
Python是功能强大、免费、开源,实现面向对象的编程语言,在数据处理、科学计算、数学建模、数据挖掘和数据可视化方面具备优异的性能,这些优势使得Python在气象、海洋、地理、气候、水文和生态等地学领域的科研和工程项目中得到广泛应用。可以预见未来Python将成为的主流编程语言之一。人工智能和大数据技术在许多行业都取得了颠覆式的成果,气象和海洋领域拥有海量的模式和观测数据,是大数据和人工智能应用的天然场景。Python也是当前进行机器学习和深度学习应用的最热门语言。原创 2024-03-28 18:56:33 · 903 阅读 · 0 评论 -
GIS+Python:地质灾害风险评价的智能化解决方案
GIS简介ArcGIS基础空间数据采集与组织空间参考空间数据的转换与处理ArcGIS中的数据编辑地理数据的可视化表达空间分析:数字地形分析叠置分析距离制图密度制图统计分析重分类三维分析空间数据库建立及应用1)地质灾害风险调查评价成果信息化技术相关要求解读2)数学基础设计比例尺;坐标系类型:地理坐标系,投影坐标系;椭球参数;投影类型;坐标单位;投影带类型等。3)数据库内容及要素分层图层划分原则;图层划分及命名;图层内部属性表。原创 2024-03-26 18:10:10 · 1035 阅读 · 0 评论 -
GPT-4技术解析:与Claude3、Gemini、Sora的技术差异与优势对比
1.(实操演练)最新超强模型Claude3使用讲解2.OpenAI新模型-GPT-5介绍3.(实操演练)谷歌新模型-Gemini使用讲解4.Meta新模型-LLama35.(实操演练)阿里巴巴-通义千问6.(实操演练)科大讯飞-星火认知7.(实操演练)百度-文心一言8.(实操演练)MoonshotAI-Kimi9.(实操演练)智谱AI-智谱清言10.最新大模型GPT-4 Turbo详细介绍11.最新发布的高级数据分析,AI画图,图像识别,文档API介绍。原创 2024-03-06 18:55:12 · 2158 阅读 · 1 评论 -
遥感领域的AI革命:ChatGPT与成像光谱的完美结合
随着科技的飞速发展,人工智能(AI)已逐渐渗透到各个领域,为传统行业带来了前所未有的变革。其中,遥感技术作为观测和解析地球的重要手段,正逐渐与AI技术相结合,为地球科学研究与应用提供了全新的视角。成像光谱遥感技术,作为遥感领域的一个重要分支,它通过捕捉地物的光谱信息,为我们提供了丰富的地表数据。然而,随着数据量的不断增长,传统的数据处理方法已难以满足高效、准确的需求。此时,AI技术的引入成为了解决问题的关键。原创 2024-03-05 18:30:14 · 1596 阅读 · 0 评论 -
解锁GPT4的无限可能:AI绘图技术的创新与应用
【最新增加谷歌Gemini模型讲解、自定义GPTs及AI领域中的集中大模型的最新技术】2023年随着OpenAI开发者大会的召开,最重磅更新当属GPTs,多模态API,未来自定义专属的GPT。微软创始人比尔盖茨称ChatGPT的出现有着重大历史意义,不亚于互联网和个人电脑的问世。360创始人周鸿祎认为未来各行各业如果不能搭上这班车,就有可能被淘汰在这个数字化时代,如何能高效地处理文本、文献查阅、PPT编辑、编程、绘图和论文写作已经成为您成功的关键。原创 2024-02-29 14:37:11 · 1082 阅读 · 0 评论 -
GIS技术在灾后重建中的空间规划与决策支持
GIS简介ArcGIS基础空间数据采集与组织空间参考空间数据的转换与处理ArcGIS中的数据编辑地理数据的可视化表达空间分析:数字地形分析叠置分析距离制图密度制图统计分析重分类三维分析。原创 2024-02-20 17:36:47 · 1074 阅读 · 0 评论 -
解锁ChatGPT4与近红外光谱的强大组合:从数据解析到深度学习建模的新境界
1、传统信息检索方法与技巧总结(Google Scholar、ResearchGate、Sci-Hub、GitHub、关键词检索+同行检索、文献订阅)2、利用ChatGPT4 及插件实现联网检索文献3、利用ChatGPT4及插件总结分析文献内容(三句话摘要、子弹式要点摘要、QA摘要、表格摘要、关键词与关键句提取、页面定位、多文档对比、情感分析)4、利用ChatGPT4 及插件总结Youtube视频内容1、复习与总结、资料分享(图书、在线课程资源、源代码等)原创 2024-01-17 17:03:53 · 1057 阅读 · 0 评论 -
Python深度学习技术进阶篇|Transformer模型详解
3、自然语言处理(NLP)领域的Transformer模型:BERT、GPT-1 / GPT-2 / GPT-3 / GPT-3.5 / GPT-4(模型的总体架构、输入和输出形式、预训练目标、预训练数据的选择和处理、词嵌入方法、GPT系列模型的改进与演化、……2.两阶段(Two-stage)目标检测算法:R-CNN、Fast R-CNN、Faster R-CNN(RCNN的工作原理、Fast R-CNN和Faster R-CNN的改进之处 )。2.图的基本概念和表示(图的基本组成:节点、边、属性;原创 2023-12-28 17:17:20 · 1149 阅读 · 0 评论 -
一文了解如何获取GPT4账号及AI绘图应用
1.1 AIGC课程概述1.2 AIGC技术发展1.3 人工智能基本概念1.4 人工智能发展史1.5 人工智能技术应用场景介绍1.6 (动手练习)ChatGPT官网使用方法1.7 (动手练习)ChatGPT国内使用方法1.8 (动手练习)ChatGPT的API使用方法2.1 AI算法是如何进行训练的2.2 如何评估模型效果2.3 深度学习常用算法介绍2.4 GPT1-3模型介绍2.5 强化学习和InstructGPT模型介绍2.6 RLHF人类反馈强化学习介绍。原创 2023-10-17 15:48:17 · 321 阅读 · 0 评论 -
掌握Python机器学习:空间模拟与时间预测的实战指南
了解机器学习的发展历史、计算原理、基本定义,熟悉机器学习方法的分类,常用机器学习方法,以及模型的评估与选择;熟悉数据预处理的流程,掌握python程序包的使用;理解机器学习在生态水文中的应用,掌握机器学习模型构建方法,学会构建机器学习模型用于地表参数的空间模拟与时间预测,并掌握生态水文过程分析。原创 2023-10-12 17:53:39 · 207 阅读 · 0 评论 -
AI人工智能实践技术全面指南:从基础知识到前沿应用
人工智能(Artificial Intelligence),英文缩写为AI。[24] 它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是新一轮科技革命和产业变革的重要驱动力量。人工智能是智能学科重要的组成部分,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。原创 2023-10-11 11:43:58 · 272 阅读 · 0 评论 -
什么是GPT,初学者怎么使用并掌握Chat GPT工具
例如在科研编程、绘图领域: 1、编程建议和示例代码: 无论你使用的编程语言是Python、R、MATLAB还是其他语言,都可以为你提供相关的代码示例。2、数据可视化: 生成各种类型的数据可视化图表,如折线图、柱状图、散点图、饼图、热力图等。3、统计分析: 描述统计、假设检验、回归分析等,提供相关的建议和示例代码,帮助你理解和解释数据。7、科研方法论: 可以讨论和介绍科研的方法论,包括实验设计、数据采集、结果解释和报告撰写等方面的建议。13.14 (动手练习)Midjourney的参数和设置介绍。原创 2023-10-06 14:19:10 · 1151 阅读 · 0 评论 -
AI绘图:GPT4技术的艺术化呈现与无限可能
例如在科研编程、绘图领域: 1、编程建议和示例代码: 无论你使用的编程语言是Python、R、MATLAB还是其他语言,都可以为你提供相关的代码示例。2、数据可视化: 生成各种类型的数据可视化图表,如折线图、柱状图、散点图、饼图、热力图等。3、统计分析: 描述统计、假设检验、回归分析等,提供相关的建议和示例代码,帮助你理解和解释数据。7、科研方法论: 可以讨论和介绍科研的方法论,包括实验设计、数据采集、结果解释和报告撰写等方面的建议。15.5 (动手练习)使用Inpainting进行图像的局部重绘。原创 2023-10-06 14:05:46 · 425 阅读 · 0 评论 -
AI绘图:GPT4技术的艺术化呈现与无限可能
例如在科研编程、绘图领域: 1、编程建议和示例代码: 无论你使用的编程语言是Python、R、MATLAB还是其他语言,都可以为你提供相关的代码示例。2、数据可视化: 生成各种类型的数据可视化图表,如折线图、柱状图、散点图、饼图、热力图等。3、统计分析: 描述统计、假设检验、回归分析等,提供相关的建议和示例代码,帮助你理解和解释数据。7、科研方法论: 可以讨论和介绍科研的方法论,包括实验设计、数据采集、结果解释和报告撰写等方面的建议。13.14 (动手练习)Midjourney的参数和设置介绍。原创 2023-10-03 20:22:50 · 286 阅读 · 0 评论 -
GPT的优势和GPT缺点
GPT采用自监督学习的方式进行预训练,可以利用大量的文本语料库进行训练,进一步提高模型的自然语言理解和生成能力。随着训练的深入,GPT技术的语言生成质量也将不断提升。只能实现单向文本生成:与一些双向解码器(如BERT)不同,GPT采用单向的解码器,只能利用前面的上下文信息进行生成,无法利用后面的文本信息,因此其生成文本的连贯性和逻辑性可能不如双向解码器。总之,GPT技术是一项非常有用的人工智能技术,它具有极高的语言生成能力和自我训练能力,广泛应用于自然语言处理领域,并且在未来还将拥有更加广泛的应用前景。原创 2023-10-03 20:23:08 · 1117 阅读 · 0 评论 -
都在说GPT,如何学习并掌握GPT1-4模型运用
例如在科研编程、绘图领域: 1、编程建议和示例代码: 无论你使用的编程语言是Python、R、MATLAB还是其他语言,都可以为你提供相关的代码示例。3、统计分析: 描述统计、假设检验、回归分析等,提供相关的建议和示例代码,帮助你理解和解释数据。4、机器学习和数据挖掘: 可以为你提供相关的算法介绍、模型建立和调参建议,以及示例代码。7、科研方法论: 可以讨论和介绍科研的方法论,包括实验设计、数据采集、结果解释和报告撰写等方面的建议。15.5 (动手练习)使用Inpainting进行图像的局部重绘。原创 2023-09-07 16:22:29 · 295 阅读 · 0 评论 -
如何使用GPT引领前沿与应用突破之GPT4科研实践技术与AI绘图
例如在科研编程、绘图领域: 1、编程建议和示例代码: 无论你使用的编程语言是Python、R、MATLAB还是其他语言,都可以为你提供相关的代码示例。2、数据可视化: 生成各种类型的数据可视化图表,如折线图、柱状图、散点图、饼图、热力图等。3、统计分析: 描述统计、假设检验、回归分析等,提供相关的建议和示例代码,帮助你理解和解释数据。7、科研方法论: 可以讨论和介绍科研的方法论,包括实验设计、数据采集、结果解释和报告撰写等方面的建议。13.14 (动手练习)Midjourney的参数和设置介绍。原创 2023-09-04 18:30:42 · 796 阅读 · 0 评论 -
基于PyTorch深度学习遥感影像地物分类与目标检测、分割及遥感影像问题深度学习优化
随着小卫星星座的普及,对地观测已具备3次以上的全球覆盖能力,遥感影像也不断被更深入的应用于矿产勘探、精准农业、城市规划、林业测量、军事目标识别和灾害评估中。深度卷积网络采用“端对端”的特征学习,通过多层处理机制揭示隐藏于数据中的非线性特征,能够从大量训练集中自动学习全局特征(这种特征被称为“学习特征”),是其在遥感影像自动目标识别取得成功的重要原因,也标志特征模型从手工特征向学习特征转变。3. 目标检测模型的评估方案,包括正确率,精确率,召回率,mAP等。(2)讲解数据集的制作过程,包括数据的存储和处理。原创 2023-08-24 18:11:58 · 1371 阅读 · 0 评论 -
Python集成学习算法教程
Python语法和动态类型,以及解释型语言的本质,使它成为多数平台上写脚本和快速开发应用的编程语言, 随着版本的不断更新和语言新功能的添加,逐渐被用于独立的、大型项目的开发。机器学习是人工智能的基础,因此,掌握常用机器学习算法的工作原理,并能够熟练运用Python建立实际的机器学习模型,是开展人工智能相关研究的前提和基础。Python在各个编程语言中比较适合新手学习,Python解释器易于扩展,可以使用C语言或C++(或者其他可以通过C调用的语言)扩展新的功能和数据类型。(2)决策树与随机森林模型。原创 2023-08-23 18:02:04 · 173 阅读 · 0 评论 -
python从入门到精通——完整教程
5、PyTorch常用工具包及API简介:张量Tensor的定义、属性、创建、运算、索引与切片、torchvision(transforms、datasets、model)、torch.nn、torch.optim、torch.utils(Dataset、DataLoader)1、科技论文结构解析(Title、Abstract、Keywords、Introduction、Materials & Methods、Results、Discussion、Conclusion、References)原创 2023-08-21 11:46:58 · 1131 阅读 · 0 评论 -
如何快速掌握Python 数据挖掘与机器学习
机器学习是人工智能的基础,因此,掌握常用机器学习算法的工作原理,并能够熟练运用Python建立实际的机器学习模型,是开展人工智能相关研究的前提和基础。1、遗传算法(Genetic Algorithm, GA)的基本原理(以遗传算法为代表的群优化算法的基本思想是什么?随机森林的本质是什么?3、Python基础(数据类型和变量、字符串和编码、list和tuple、条件判断、循环、函数的定义与调用等)7、坐标轴高阶应用(共享绘图区域的坐标轴、坐标轴刻度样式设置、控制坐标轴的显示、移动坐标轴的位置)原创 2023-05-29 18:16:52 · 459 阅读 · 0 评论 -
MATLAB助力生态环境时空数据分析【免费教程】
MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版本中也加入了对C,FORTRAN,C++,JAVA的支持。朱老师(副教授)∶劳伦斯伯克利国家实验室/科罗拉多州立大学博士后、长期从事生态遥感监测、湿地碳循环、生态模型、全球变化生态学等研究,基于无人机在生态环境中的应用具有丰富实践项目经验。原创 2023-03-27 17:52:02 · 626 阅读 · 0 评论 -
PyTorch机器学习与深度学习技术方法与案例实践应用
过拟合(Overfitting)与欠拟合(Underfitting)、泛化性能评价指标的设计、样本不平衡问题、模型评价与模型选择(奥卡姆剃刀定律)等)1、BP神经网络的基本原理(人工神经网络的分类有哪些?6、科学计算模块库(Numpy的安装;5、卷积神经网络调参技巧(卷积核尺寸、卷积核个数、移动步长、补零操作、池化核尺寸等参数与特征图的维度,以及模型参数量之间的关系是怎样的?4、张量(Tensor)的运算(加法、减法、矩阵乘法、哈达玛积(element wise)、除法、幂、开方、指数与对数、近似、裁剪)原创 2023-03-22 17:32:47 · 405 阅读 · 0 评论 -
【免费教程】 基于MATLAB图像处理基础及BP神经网络人脸朝向识别
MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。郁磊老师,副教授,主要从事MATLAB 编程、机器学习与数据挖掘、数据可视化和软件开发、生理系统建模与仿真、生物医学信号处理,具有丰富的实战应用经验,主编《MATLAB智能算法30个案例分析》、《MATLAB神经网络43个案例分析》相关著作。原创 2023-03-22 17:32:55 · 252 阅读 · 0 评论 -
如何熟练掌握Python在气象水文中的数据处理及绘图【免费教程】
Python语法和动态类型,以及解释型语言的本质,使它成为多数平台上写脚本和快速开发应用的编程语言, 随着版本的不断更新和语言新功能的添加,逐渐被用于独立的、大型项目的开发。陈老师,副研究员,来自重点高校及科研院所一线科研人员,长期从事气象水文、陆面水文模型及区域气候模拟研究,主持多项国家级科研项目,第一作者发表科研论文20余篇。Python解释器易于扩展,可以使用C语言或C++(或者其他可以通过C调用的语言)扩展新的功能和数据类型。希望这里面有适合的学习内容,同时,我也希望这篇文章的内容对你有所帮助。原创 2023-02-15 17:07:12 · 594 阅读 · 0 评论 -
Python实现的深度学习技术在水文水质领域应用
在水文水环境领域,基于神经网络的深度学习方法则能弥补上述不足,它能自动寻找输入和输出数据之间的内在关联,不需要人工显式地给出原理,直接由算法在数据中学习评价和预测规则,适合当前大数据背景下的多种应用,且近年来深度学习技术在水文水环境领域亦取得了丰硕的研究成果。本数据集共有203张图片,共5个类别。随着信息技术的发展,近十几年来,我国各大流域累计的水文、气象、水环境数据逐渐增多,许多学者和研究人员开始意识到这些数据的潜在价值,纷纷开展基于深度学习模型的水文预报、水质评价和预测的研究,目前也取得了丰硕的成果。原创 2022-12-21 17:01:20 · 1635 阅读 · 0 评论 -
MATLAB 2021b的机器学习、深度学习
1、深度学习与传统机器学习的区别与联系(神经网络的隐含层数越多越好吗?2、自编码器的变种(栈式自编码器、稀疏自编码器、去噪自编码器、卷积自编码器、掩码自编码器等)及其工作原理。为什么可以迁移学习?3、调参技巧(参数初始化、数据预处理、数据扩增、批量归一化、超参数优化、网络正则化等)2、优化算法(梯度下降、随机梯度下降、小批量随机梯度下降、动量法、Adam等)2、文件导入:mat、txt、xls、csv、jpg、wav、avi等格式。1. 支持向量机的基本原理(支持向量的本质、核函数的意义、SVM的启示等)原创 2022-11-23 14:53:21 · 912 阅读 · 0 评论 -
如何熟练掌握MATLAB机器学习、深度学习在图像中的处理
3、LeNet、AlexNet、Vgg-16/19、GoogLeNet、ResNet等经典深度神经网络的区别与联系。1、深度学习与传统机器学习的区别与联系(神经网络的隐含层数越多越好吗?5、预训练模型(Alexnet、Vgg-16/19、GoogLeNet、ResNet等)的下载与安装。2、图像的常见格式及读写(彩色图像、灰度图像、二值图像等)3、数据预处理(归一化、异常值剔除、数据扩增技术等)5、数字图像的几何变换(平移、镜像、缩放、旋转等)五、生成式对抗网络(GAN)及其在图像处理中的应用。原创 2022-11-22 16:05:59 · 1487 阅读 · 0 评论 -
MATLAB近红外光谱分析技术
1、主成分分析(PCA)、偏最小二乘(PLS)的基本原理(PCA与PLS的区别与联系;1、深度学习与传统机器学习的区别与联系(神经网络的隐含层数越多越好吗?2、BP神经网络参数的优化(隐含层神经元个数、学习率、初始权值和阈值等如何设置?3、MATLAB文件读写(mat、txt、xls、csv、jpg、wav、avi等格式)二。4、案例演示:一维卷积神经网络的MATLAB实现(基于卷积神经网络的近红外光谱建模)3、值得研究的若干问题(欠拟合与过拟合、泛化性能评价指标的设计、样本不平衡问题等)原创 2022-11-22 15:42:57 · 2433 阅读 · 0 评论 -
PyTorch深度学习
7、PyTorch常用工具包及API简介(torchvision(transforms、datasets、model)、torch.nn、torch.optim、torch.utils(Dataset、DataLoader))4、张量(Tensor)的运算(加法、减法、矩阵乘法、哈达玛积(element wise)、除法、幂、开方、指数与对数、近似、裁剪)CNN提取的特征是怎样的?2、张量(Tensor)的常用属性与方法(dtype、device、layout、requires_grad、cuda等)原创 2022-11-21 15:04:45 · 622 阅读 · 0 评论 -
GeoDa与R语言的空间数据回归
空间数据是常见的数据形式之一,因此空间数据回归也是最常用的方法之一。由于空间数据之间往往有相关性,它们不满足经典统计学的数据独立性假设,所以回归的理论和建模方式与普通回归模型相比既陌生又复杂。GeoDa与R语言是建立空间回归模型最合适的软件;尤其是GeoDa提供了用户友好的界面,是空间回归方法最方便的建模软件。1.空间滞后模型:二阶段估计与极大似然法。1.非空间模型的空间格局模型:原理与操作。2.空间的局域相关与全局相关度量。2.基于空间模型的空间格局模型。2.非空间的回归诊断。2.矩阵指数空间模型。原创 2022-11-17 16:04:11 · 1558 阅读 · 0 评论 -
R语言结构方程模型(SEM)在生态学领域中的实践
结构方程模型(Sructural Equation Model)是一种建立、估计和检验研究系统中多变量间因果关系的模型方法,它可以替代多元回归、因子分析、协方差分析等方法,利用图形化模型方式清晰展示研究系统中变量间的因果网络关系,是近年来地学、生态、进化、环境、医学、社会、经济领域中应用十分广泛的统计方法。(3) 案例1:气候及生态位重叠程度对田鼠物种丰富度影响:模型比较、直接和间接效应计算(blavaan)(4) 案例2:火烧后对植被恢复影响因素-模型拟合、模型比较和评估(brms)原创 2022-10-28 16:29:23 · 2204 阅读 · 0 评论 -
熟练掌握R语言的Meta分析全流程和不确定性分析,并结合机器学习等方法讲解Meta分析在文献大数据的延伸应用
本次针对Meta分析原理、公式、操作步骤及结果分析,进阶应用进行详细解析,结合多个例子,熟练掌握Meta分析全流程和不确定性分析,并结合机器学习等方法讲解Meta分析在文献大数据的延伸应用。从自编程计算到调用Meta包(meta、metafor、dmetar、esc、metasens、metamisc、meta4diag、gemtc、robvis、netmeta、brms等),全程分析如何进行meta计算、meta诊断、贝叶斯meta、网状meta、亚组分析、meta回归及作图。原创 2022-10-28 11:45:48 · 765 阅读 · 0 评论