深度学习
文章平均质量分 83
zmjia111
这个作者很懒,什么都没留下…
展开
-
ChatGPT的多面手:日常办公、论文写作与深度学习的结合
1、(实操演练)传统信息检索方法与技巧总结(Google Scholar、ResearchGate、Sci-Hub、GitHub、关键词检索+同行检索、文献订阅)2、(实操演练)利用ChatGPT-4o实现联网检索文献3、(实操演练)利用ChatGPT-4o阅读与总结分析学术论文内容(论文主要工作、创新点、局限性与不足、多文档对比分析等)4、(实操演练)利用ChatGPT-4o解读论文中的系统框图工作原理5、(实操演练)利用ChatGPT-4o解读论文中的数学公式含义。原创 2024-11-07 09:25:15 · 774 阅读 · 0 评论 -
深度学习全景进阶:最新Python深度学习进阶与前沿应用
近年来,伴随着以卷积神经网络(CNN)为代表的深度学习的快速发展,人工智能迈入了第三次发展浪潮,AI技术在各个领域中的应用越来越广泛。原创 2024-10-05 11:46:26 · 1150 阅读 · 0 评论 -
基于PyTorch深度学习技术及实践应用
1、深度学习框架概述(PyTorch、Tensorflow、Keras等)2、PyTorch简介(PyTorch的版本、动态计算图与静态计算图机制、PyTorch的优点)3、PyTorch的安装与环境配置(Pip vs. Conda包管理方式、验证是否安装成功)原创 2024-07-03 17:29:24 · 1029 阅读 · 0 评论 -
AI在科研中的应用:chatgptgpt4的数据分析与机器学习
1、2024 AIGC技术最新进展介绍(生成式人工智能的基本概念与原理、文生视频模型OpenAI Sora vs.Google Veo)2、(实操演练)国内外大语言模型(ChatGPT 4O、Gemini、Claude、Llama3、文心一言、星火、通义千问、Kimi、智谱清言等)对比分析3、(实操演练)Llama3开源大语言模型的本地部署、对话与微调训练本地数据4、(实操演练)ChatGPT对话初体验(注册与充值、购买方法)原创 2024-05-30 10:56:28 · 707 阅读 · 0 评论 -
深度学习新篇章:PyTorch在遥感地物分类的革命性应用
我国高分辨率对地观测系统重大专项已全面启动,高空间、高光谱、高时间分辨率和宽地面覆盖于一体的全球天空地一体化立体对地观测网逐步形成,将成为保障国家安全的基础性和战略性资源。未来10年全球每天获取的观测数据将超过10PB,遥感大数据时代已然来临。随着小卫星星座的普及,对地观测已具备3次以上的全球覆盖能力,遥感影像也不断被更深入的应用于矿产勘探、精准农业、城市规划、林业测量、军事目标识别和灾害评估中。最近借助深度学习方法,基于卷积神经网络的遥感影像自动地物识别取得了令人印象深刻的结果。原创 2024-03-22 18:42:16 · 1585 阅读 · 0 评论 -
Python深度学习技术进阶篇|Transformer模型详解
3、自然语言处理(NLP)领域的Transformer模型:BERT、GPT-1 / GPT-2 / GPT-3 / GPT-3.5 / GPT-4(模型的总体架构、输入和输出形式、预训练目标、预训练数据的选择和处理、词嵌入方法、GPT系列模型的改进与演化、……2.两阶段(Two-stage)目标检测算法:R-CNN、Fast R-CNN、Faster R-CNN(RCNN的工作原理、Fast R-CNN和Faster R-CNN的改进之处 )。2.图的基本概念和表示(图的基本组成:节点、边、属性;原创 2023-12-28 17:17:20 · 1149 阅读 · 0 评论 -
MATLAB 2023版的深度学习工具箱原理及应用
CNN提取的特征是怎样的?3、LeNet、AlexNet、Vgg-16/19、GoogLeNet、ResNet等经典深度神经网络的区别与联系。4、预训练模型(Alexnet、Vgg-16/19、GoogLeNet、ResNet等)的下载与安装。2、经典自编码器(栈式自编码器、稀疏自编码器、去噪自编码器、卷积自编码器、掩码自编码器等)6、调参技巧(参数初始化、数据预处理、数据扩增、批量归一化、超参数优化、网络正则化等)5、优化算法(梯度下降、随机梯度下降、小批量随机梯度下降、动量法、Adam等)原创 2023-07-21 16:49:59 · 1214 阅读 · 0 评论 -
Citespace软件基础应用
它是一款分析科学文献中蕴含的潜在知识,并在科学计量学、数据和信息可视化背景下发展起来的一款多元、分时、动态的引文可视化分析软件,通过可视化的手段呈现科学知识的结构、规律和分布情况。CiteSpace软件是Citation Space的简称,可以译为“引文空间”,由美国德雷赛尔大学计算机与情报学教授陈超美博士基于Java语言开发、基于引文分析理论的信息可视化软件。Citespace是使用最广泛的文献信息可视化软件工具,在理工、经管、法学、教育、农学、文史、医学、艺术等学科中普遍应用,发文量逐年显著上升。原创 2023-06-15 17:33:42 · 1749 阅读 · 0 评论 -
如何快速掌握Python 数据挖掘与机器学习
机器学习是人工智能的基础,因此,掌握常用机器学习算法的工作原理,并能够熟练运用Python建立实际的机器学习模型,是开展人工智能相关研究的前提和基础。1、遗传算法(Genetic Algorithm, GA)的基本原理(以遗传算法为代表的群优化算法的基本思想是什么?随机森林的本质是什么?3、Python基础(数据类型和变量、字符串和编码、list和tuple、条件判断、循环、函数的定义与调用等)7、坐标轴高阶应用(共享绘图区域的坐标轴、坐标轴刻度样式设置、控制坐标轴的显示、移动坐标轴的位置)原创 2023-05-29 18:16:52 · 459 阅读 · 0 评论 -
PyTorch机器学习与深度学习技术方法与案例实践应用
过拟合(Overfitting)与欠拟合(Underfitting)、泛化性能评价指标的设计、样本不平衡问题、模型评价与模型选择(奥卡姆剃刀定律)等)1、BP神经网络的基本原理(人工神经网络的分类有哪些?6、科学计算模块库(Numpy的安装;5、卷积神经网络调参技巧(卷积核尺寸、卷积核个数、移动步长、补零操作、池化核尺寸等参数与特征图的维度,以及模型参数量之间的关系是怎样的?4、张量(Tensor)的运算(加法、减法、矩阵乘法、哈达玛积(element wise)、除法、幂、开方、指数与对数、近似、裁剪)原创 2023-03-22 17:32:47 · 405 阅读 · 0 评论 -
【免费教程】 基于MATLAB图像处理基础及BP神经网络人脸朝向识别
MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。郁磊老师,副教授,主要从事MATLAB 编程、机器学习与数据挖掘、数据可视化和软件开发、生理系统建模与仿真、生物医学信号处理,具有丰富的实战应用经验,主编《MATLAB智能算法30个案例分析》、《MATLAB神经网络43个案例分析》相关著作。原创 2023-03-22 17:32:55 · 252 阅读 · 0 评论 -
Python实现的深度学习技术在水文水质领域应用
在水文水环境领域,基于神经网络的深度学习方法则能弥补上述不足,它能自动寻找输入和输出数据之间的内在关联,不需要人工显式地给出原理,直接由算法在数据中学习评价和预测规则,适合当前大数据背景下的多种应用,且近年来深度学习技术在水文水环境领域亦取得了丰硕的研究成果。本数据集共有203张图片,共5个类别。随着信息技术的发展,近十几年来,我国各大流域累计的水文、气象、水环境数据逐渐增多,许多学者和研究人员开始意识到这些数据的潜在价值,纷纷开展基于深度学习模型的水文预报、水质评价和预测的研究,目前也取得了丰硕的成果。原创 2022-12-21 17:01:20 · 1635 阅读 · 0 评论 -
“R语言+遥感”的水环境综合评价方法
7、掌握水环境遥感信息提取结果的可视化制图方法(R语言)4、掌握水深提取——多元回归分析方法(R语言+遥感)6、掌握水质提取——神经网络分析方法(R语言+遥感)5、掌握水温提取——支持向量机方法(R语言+遥感)3、掌握水线提取——水体指数与阈值混合法(遥感)1.5 案例形式的R语言语法基础学习(R语言)2.1 遥感水环境污染评价理论(遥感)5.2 Landsat8卫星热红外波段。(5)绘制叶绿素、氮、磷、钾神经网络图。2.3 遥感数据辐射校正方法(遥感)2.4 遥感数据高清融合方法(遥感)原创 2022-12-19 15:39:41 · 546 阅读 · 0 评论 -
R语言贝叶斯参数估计、回归与计算
贝叶斯统计学是一门基本思想与传统基于频率思想的统计学完全不同的统计学方法;它以其灵活性和先进性在现代的统计学中占据着重要的地位。贝叶斯统计学是开展科学研究不可缺少的重要手段,但是,因为其思想、技术和方法都与传统统计学有着较大区别;且其计算中涉及马尔科夫、蒙特卡罗和吉布斯采样等现代计算方法,对使用者经验和能力构成了很大的挑战。8.4 M-H算法与吉布斯采样的组合。7.1 回归的本质与最小二乘法。4.1 均值与条件方差的推断。7.4 吉布斯采样与模型平均。2.2 泊松模型与后验分布。原创 2022-11-28 09:49:35 · 1246 阅读 · 0 评论 -
R语言的分位数回归
由于其基本假设的限制,包括线性回归及广义线性回归在内的各种常见的回归方法都有三个重大缺陷:(1)对于异常值非常敏感,极少量的异常值可能导致结果产生巨大的误差;(2)对数据的分布有着较为苛刻的要求,如果数据不符合指定的分布,结果同样是不可信的;分位数回归的出现较好的解决了第(1)和第(3)个问题,对不同分布数据也表现非常好的稳定性。分位数回归是一种较新的回归技术,在实践中与普通的线性回归有很大区别,在理论上比线性回归复杂很多。4.线性回归的推广与分位数函数。2.分位数回归结果的解释。3.贝叶斯分位数回归。原创 2022-11-25 15:56:56 · 649 阅读 · 0 评论 -
R语言的现代线性回归
1.定量与定性自变量。1.共线性与方差膨胀。3.方差估计与模型效用。1.系数估计与模型拟合。3.指数族分布的方差函数。1.线性回归模型与模型假定。5.加权最小二乘法与迭代加权最小二乘法。2.奇异值与强影响数据:失效点分析。4.连接函数:广义化与分布。2.最小二乘法方法与性质。4.稳健回归的自助标准误。2.矩估计与最大似然估计。4.决定系数与拟合优度。4.预测与外推的陷阱。五、通向广义线性回归。原创 2022-11-25 15:50:44 · 384 阅读 · 0 评论 -
MATLAB 2021b的机器学习、深度学习
1、深度学习与传统机器学习的区别与联系(神经网络的隐含层数越多越好吗?2、自编码器的变种(栈式自编码器、稀疏自编码器、去噪自编码器、卷积自编码器、掩码自编码器等)及其工作原理。为什么可以迁移学习?3、调参技巧(参数初始化、数据预处理、数据扩增、批量归一化、超参数优化、网络正则化等)2、优化算法(梯度下降、随机梯度下降、小批量随机梯度下降、动量法、Adam等)2、文件导入:mat、txt、xls、csv、jpg、wav、avi等格式。1. 支持向量机的基本原理(支持向量的本质、核函数的意义、SVM的启示等)原创 2022-11-23 14:53:21 · 912 阅读 · 0 评论 -
如何熟练掌握MATLAB机器学习、深度学习在图像中的处理
3、LeNet、AlexNet、Vgg-16/19、GoogLeNet、ResNet等经典深度神经网络的区别与联系。1、深度学习与传统机器学习的区别与联系(神经网络的隐含层数越多越好吗?5、预训练模型(Alexnet、Vgg-16/19、GoogLeNet、ResNet等)的下载与安装。2、图像的常见格式及读写(彩色图像、灰度图像、二值图像等)3、数据预处理(归一化、异常值剔除、数据扩增技术等)5、数字图像的几何变换(平移、镜像、缩放、旋转等)五、生成式对抗网络(GAN)及其在图像处理中的应用。原创 2022-11-22 16:05:59 · 1487 阅读 · 0 评论 -
MATLAB近红外光谱分析技术
1、主成分分析(PCA)、偏最小二乘(PLS)的基本原理(PCA与PLS的区别与联系;1、深度学习与传统机器学习的区别与联系(神经网络的隐含层数越多越好吗?2、BP神经网络参数的优化(隐含层神经元个数、学习率、初始权值和阈值等如何设置?3、MATLAB文件读写(mat、txt、xls、csv、jpg、wav、avi等格式)二。4、案例演示:一维卷积神经网络的MATLAB实现(基于卷积神经网络的近红外光谱建模)3、值得研究的若干问题(欠拟合与过拟合、泛化性能评价指标的设计、样本不平衡问题等)原创 2022-11-22 15:42:57 · 2433 阅读 · 0 评论 -
PyTorch深度学习
7、PyTorch常用工具包及API简介(torchvision(transforms、datasets、model)、torch.nn、torch.optim、torch.utils(Dataset、DataLoader))4、张量(Tensor)的运算(加法、减法、矩阵乘法、哈达玛积(element wise)、除法、幂、开方、指数与对数、近似、裁剪)CNN提取的特征是怎样的?2、张量(Tensor)的常用属性与方法(dtype、device、layout、requires_grad、cuda等)原创 2022-11-21 15:04:45 · 622 阅读 · 0 评论 -
R语言在气象、水文中数据处理及结果分析、绘图
R的统计和绘图功能都是通过R功能包来实现的。R 不仅功能强大,更是简单易学,所以目前成为了在数据分析领域最热门的集中编程语言之一,广泛用于人工智能、统计学术研究在内的各个领域,鉴于R开源的特性和强大的功能,R与Python慢慢成为了数据分析与人工智能领域最流行的语言。除了以上行业,在地学领域,R也提供了大量的数据处理和绘图的专门包,甚至在官网还有关于地学空间数据、时空数据以及R在水文数据和模拟应用上的专题。文件的读写,典型气象数据的读取(站点数据、再分析数据、模式数据,txt文件、netcdf 文件)原创 2022-11-10 15:03:30 · 1241 阅读 · 0 评论 -
R语言结构方程模型(SEM)在生态学领域中的实践
结构方程模型(Sructural Equation Model)是一种建立、估计和检验研究系统中多变量间因果关系的模型方法,它可以替代多元回归、因子分析、协方差分析等方法,利用图形化模型方式清晰展示研究系统中变量间的因果网络关系,是近年来地学、生态、进化、环境、医学、社会、经济领域中应用十分广泛的统计方法。(3) 案例1:气候及生态位重叠程度对田鼠物种丰富度影响:模型比较、直接和间接效应计算(blavaan)(4) 案例2:火烧后对植被恢复影响因素-模型拟合、模型比较和评估(brms)原创 2022-10-28 16:29:23 · 2204 阅读 · 0 评论 -
熟练掌握R语言的Meta分析全流程和不确定性分析,并结合机器学习等方法讲解Meta分析在文献大数据的延伸应用
本次针对Meta分析原理、公式、操作步骤及结果分析,进阶应用进行详细解析,结合多个例子,熟练掌握Meta分析全流程和不确定性分析,并结合机器学习等方法讲解Meta分析在文献大数据的延伸应用。从自编程计算到调用Meta包(meta、metafor、dmetar、esc、metasens、metamisc、meta4diag、gemtc、robvis、netmeta、brms等),全程分析如何进行meta计算、meta诊断、贝叶斯meta、网状meta、亚组分析、meta回归及作图。原创 2022-10-28 11:45:48 · 765 阅读 · 0 评论