Meta分析是针对某一科研问题,根据明确的搜索策略、选择筛选文献标准、采用严格的评价方法,对来源不同的研究成果进行收集、合并及定量统计分析的方法,最早出现于“循证医学”,现已广泛应用于农林生态,资源环境等方面。R语言拥有完整有效的数据处理、统计分析与保存机制,可以对数据直接进行分析和显示,命令格式简单、结果可读性强,包含众多针对Meta分析软件包,是进行Meta整合分析及评价的有效平台。本次针对Meta分析原理、公式、操作步骤及结果分析,进阶应用进行详细解析,结合多个例子,熟练掌握Meta分析全流程和不确定性分析,并结合机器学习等方法讲解Meta分析在文献大数据的延伸应用
阅读全文点击《熟练掌握R语言的Meta分析全流程和不确定性分析,并结合机器学习等方法讲解Meta分析在文献大数据的延伸应用》
一 Meta分析的选题与检索
1 Meta分析的选题与文献检索
1) 什么是Meta分析
2) Meta分析的选题策略
3) 文献检索数据库
4) 精确检索策略,如何检索全、检索准
5) 文献的管理与清洗,如何制定文献纳入排除标准
6) 文献数据获取技巧
7) 文献计量分析CiteSpace及研究热点分析
二、Meta分析与R语言基础
2 Meta分析的常用软件与R语言基础
1) R语言做Meta分析的优势及其《Nature》、《Science》经典案例应用
2) R语言基本操作
3) R语言数据清洗方法
4) R语言Meta分析常用包及相关插件介绍与安装
从自编程计算到调用Meta包(meta、metafor、dmetar、esc、metasens、metamisc、meta4diag、gemtc、robvis、netmeta、brms等),全程分析如何进行meta计算、meta诊断、贝叶斯meta、网状meta、亚组分析、meta回归及作图。
三、R语言Meta分析与作图
3 R语言Meta分析
1) R语言Meta分析的流程
2) 各类meta效应值和累计效应值计算
连续资料的RR、MD与SMD
分类资料的RR和OR
3) Meta亚组分析
4) R语言图形可视化基础
5) 如何用ggplot2绘制漂亮的森林图
四、R语言Meta回归分析
4 R语言Meta回归分析
1) Meta回归统计分析理论及应用
2) Meta回归和普通回归分析的异同
3) 固定效应与随机效应分析
4) 泡泡图(bubble)的绘制
五、R语言Meta诊断分析
5 R语言Meta诊断进阶
1) Meta诊断分析(t2、I2、H2、Q等统计量)
2) 异质性检验
3) 敏感性分析
4) 偏倚分析
5) 风险分析
六、R语言Meta分析的不确定性
6 R语言Meta分析的不确定性
1) 网状Meta分析
2) 贝叶斯理论
3) R语言贝叶斯工具Stan、JAGS和brms
4) 贝叶斯Meta分析及不确定性分析
七、机器学习在Meta分析中的应用
7 机器学习在Meta分析中的应用
1) 机器学习基础以及Meta机器学习的优势
2) Meta加权随机森林(MetaForest)的使用
3) 使用Meta机器学习对文献中的大数据进行整合
4) 使用机器学习进行驱动因子分析