机器学习
文章平均质量分 82
zmjia111
这个作者很懒,什么都没留下…
展开
-
ChatGPT的多面手:日常办公、论文写作与深度学习的结合
1、(实操演练)传统信息检索方法与技巧总结(Google Scholar、ResearchGate、Sci-Hub、GitHub、关键词检索+同行检索、文献订阅)2、(实操演练)利用ChatGPT-4o实现联网检索文献3、(实操演练)利用ChatGPT-4o阅读与总结分析学术论文内容(论文主要工作、创新点、局限性与不足、多文档对比分析等)4、(实操演练)利用ChatGPT-4o解读论文中的系统框图工作原理5、(实操演练)利用ChatGPT-4o解读论文中的数学公式含义。原创 2024-11-07 09:25:15 · 774 阅读 · 0 评论 -
Python深度学习:AI技术发展的新引擎
近年来,伴随着以卷积神经网络(CNN)为代表的深度学习的快速发展,人工智能迈入了第三次发展浪潮,AI技术在各个领域中的应用越来越广泛。原创 2024-08-28 10:20:59 · 1283 阅读 · 0 评论 -
Python在地球科学中的跨学科研究方法论
Python是功能强大、免费、开源,实现面向对象的编程语言,Python能够运行在Linux、Windows、Macintosh、AIX操作系统上及不同平台(x86和arm),Python简洁的语法和对动态输入的支持,再加上解释性语言的本质,使得它在大多数平台上的许多领域都是一个理想的脚本语言,特别适用于快速的应用程序开发。Python具有丰富和强大的库,能够把用其他语言制作的各种模块(尤其是C/C++)很轻松地联结在一起。原创 2024-07-19 08:46:14 · 648 阅读 · 0 评论 -
基于PyTorch深度学习技术及实践应用
1、深度学习框架概述(PyTorch、Tensorflow、Keras等)2、PyTorch简介(PyTorch的版本、动态计算图与静态计算图机制、PyTorch的优点)3、PyTorch的安装与环境配置(Pip vs. Conda包管理方式、验证是否安装成功)原创 2024-07-03 17:29:24 · 1029 阅读 · 0 评论 -
气象预测新篇章:Python人工智能的变革力量
Python是功能强大、免费、开源,实现面向对象的编程语言,在数据处理、科学计算、数学建模、数据挖掘和数据可视化方面具备优异的性能,这些优势使得Python在气象、海洋、地理、气候、水文和生态等地学领域的科研和工程项目中得到广泛应用。可以预见未来Python将成为的主流编程语言之一。人工智能和大数据技术在许多行业都取得了颠覆式的成果,气象和海洋领域拥有海量的模式和观测数据,是大数据和人工智能应用的天然场景。Python也是当前进行机器学习和深度学习应用的最热门语言。原创 2024-03-28 18:56:33 · 903 阅读 · 0 评论 -
GPT-4席卷全球,Claude3、Gemini、Sora如何应战?
1.(实操演练)最新超强模型Claude3使用讲解2.OpenAI新模型-GPT-5介绍3.(实操演练)谷歌新模型-Gemini使用讲解4.Meta新模型-LLama35.(实操演练)阿里巴巴-通义千问6.(实操演练)科大讯飞-星火认知7.(实操演练)百度-文心一言8.(实操演练)MoonshotAI-Kimi9.(实操演练)智谱AI-智谱清言10.最新大模型GPT-4 Turbo详细介绍11.最新发布的高级数据分析,AI画图,图像识别,文档API介绍。原创 2024-03-19 18:29:03 · 1657 阅读 · 0 评论 -
MATLAB 2023a:强化学习算法的实战演练与性能评估
加粗样式1、MATLAB Deep Learning Toolbox概览2、实时脚本(Live Script)与交互控件(Control)功能介绍与演示3、批量大数据导入及Datastore类函数功能介绍与演示4、数据清洗(Data Cleaning)功能介绍与演示5、深度网络设计器(Deep Network Designer)功能介绍与演示6、实验管理器(Experiment Manager)功能介绍与演示7、MATLAB Deep Learning Model Hub简介。原创 2024-03-19 18:23:56 · 1200 阅读 · 0 评论 -
谁将主导未来AI市场?Claude3、Gemini、Sora与GPT-4的技术比拼
1.(实操演练)最新超强模型Claude3使用讲解2.OpenAI新模型-GPT-5介绍3.(实操演练)谷歌新模型-Gemini使用讲解4.Meta新模型-LLama35.(实操演练)阿里巴巴-通义千问6.(实操演练)科大讯飞-星火认知7.(实操演练)百度-文心一言8.(实操演练)MoonshotAI-Kimi9.(实操演练)智谱AI-智谱清言10.最新大模型GPT-4 Turbo详细介绍11.最新发布的高级数据分析,AI画图,图像识别,文档API介绍。原创 2024-03-14 18:35:13 · 1874 阅读 · 0 评论 -
GPT-4技术解析:与Claude3、Gemini、Sora的技术差异与优势对比
1.(实操演练)最新超强模型Claude3使用讲解2.OpenAI新模型-GPT-5介绍3.(实操演练)谷歌新模型-Gemini使用讲解4.Meta新模型-LLama35.(实操演练)阿里巴巴-通义千问6.(实操演练)科大讯飞-星火认知7.(实操演练)百度-文心一言8.(实操演练)MoonshotAI-Kimi9.(实操演练)智谱AI-智谱清言10.最新大模型GPT-4 Turbo详细介绍11.最新发布的高级数据分析,AI画图,图像识别,文档API介绍。原创 2024-03-06 18:55:12 · 2158 阅读 · 1 评论 -
解锁ChatGPT4与近红外光谱的强大组合:从数据解析到深度学习建模的新境界
1、传统信息检索方法与技巧总结(Google Scholar、ResearchGate、Sci-Hub、GitHub、关键词检索+同行检索、文献订阅)2、利用ChatGPT4 及插件实现联网检索文献3、利用ChatGPT4及插件总结分析文献内容(三句话摘要、子弹式要点摘要、QA摘要、表格摘要、关键词与关键句提取、页面定位、多文档对比、情感分析)4、利用ChatGPT4 及插件总结Youtube视频内容1、复习与总结、资料分享(图书、在线课程资源、源代码等)原创 2024-01-17 17:03:53 · 1057 阅读 · 0 评论 -
Python深度学习技术进阶篇|Transformer模型详解
3、自然语言处理(NLP)领域的Transformer模型:BERT、GPT-1 / GPT-2 / GPT-3 / GPT-3.5 / GPT-4(模型的总体架构、输入和输出形式、预训练目标、预训练数据的选择和处理、词嵌入方法、GPT系列模型的改进与演化、……2.两阶段(Two-stage)目标检测算法:R-CNN、Fast R-CNN、Faster R-CNN(RCNN的工作原理、Fast R-CNN和Faster R-CNN的改进之处 )。2.图的基本概念和表示(图的基本组成:节点、边、属性;原创 2023-12-28 17:17:20 · 1149 阅读 · 0 评论 -
如何使用ChatGPT4完成Python数据分析与可视化、人工智能建模及论文高效撰写
1、传统信息检索方法与技巧总结(Google Scholar、ResearchGate、Sci-Hub、GitHub、关键词检索+同行检索、文献订阅)2、利用ChatGPT4 及插件实现联网检索文献3、利用ChatGPT4及插件总结分析文献内容(三句话摘要、子弹式要点摘要、QA摘要、表格摘要、关键词与关键句提取、页面定位、多文档对比、情感分析)4、利用ChatGPT4 及插件总结Youtube视频内容5、案例演示与实操练习。原创 2023-12-26 16:02:39 · 1139 阅读 · 0 评论 -
是趋势还是内卷?ChatGPT4融入python数据分析与可视化、人工智能建模!
1、传统信息检索方法与技巧总结(Google Scholar、ResearchGate、Sci-Hub、GitHub、关键词检索+同行检索、文献订阅)2、利用ChatGPT4 及插件实现联网检索文献3、利用ChatGPT4及插件总结分析文献内容(三句话摘要、子弹式要点摘要、QA摘要、表格摘要、关键词与关键句提取、页面定位、多文档对比、情感分析)4、利用ChatGPT4 及插件总结Youtube视频内容5、案例演示与实操练习。原创 2023-12-25 17:44:53 · 981 阅读 · 0 评论 -
Chatgpt如何完成论文写作及python机器学习和深度学习领域的运用
2023年随着OpenAI开发者大会的召开,最重磅更新当属GPTs,多模态API,未来自定义专属的GPT。微软创始人比尔盖茨称ChatGPT的出现有着重大历史意义,不亚于互联网和个人电脑的问世。360创始人周鸿祎认为未来各行各业如果不能搭上这班车,就有可能被淘汰在这个数字化时代,如何能高效地处理文本、文献查阅、PPT编辑、编程、绘图和论文写作已经成为您成功的关键。而 ChatGPT,作为一种强大的自然语言处理模型,具备显著优势,能够帮助您在各个领域取得突破。原创 2023-12-07 17:25:27 · 642 阅读 · 0 评论 -
一文了解ChatGPT Plus如何完成论文写作和AI绘图
2023年我们进入了AI2.0时代。微软创始人比尔盖茨称ChatGPT的出现有着重大历史意义,不亚于互联网和个人电脑的问世。360创始人周鸿祎认为未来各行各业如果不能搭上这班车,就有可能被淘汰在这个数字化时代,如何能高效地处理文本、文献查阅、PPT编辑、编程、绘图和论文写作已经成为您成功的关键。而 ChatGPT,作为一种强大的自然语言处理模型,具备显著优势,能够帮助您在各个领域取得突破。ChatGPT 在论文写作与编程方面也具备强大的能力。原创 2023-11-17 17:10:58 · 979 阅读 · 1 评论 -
掌握Python机器学习:空间模拟与时间预测的实战指南
了解机器学习的发展历史、计算原理、基本定义,熟悉机器学习方法的分类,常用机器学习方法,以及模型的评估与选择;熟悉数据预处理的流程,掌握python程序包的使用;理解机器学习在生态水文中的应用,掌握机器学习模型构建方法,学会构建机器学习模型用于地表参数的空间模拟与时间预测,并掌握生态水文过程分析。原创 2023-10-12 17:53:39 · 207 阅读 · 0 评论 -
AI人工智能实践技术全面指南:从基础知识到前沿应用
人工智能(Artificial Intelligence),英文缩写为AI。[24] 它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是新一轮科技革命和产业变革的重要驱动力量。人工智能是智能学科重要的组成部分,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。原创 2023-10-11 11:43:58 · 272 阅读 · 0 评论 -
利用R语言进行生态环境数据的可视化分析:方法和实践
R语言是一种用于统计分析、绘图的语言和操作环境,属于GNU系统的一个自由、免费、开源的软件,它是一个用于统计计算和统计制图的优秀工具1。R是由Ross Ihaka和Robert Gentleman在1993年开发的一种编程语言,拥有广泛的统计和图形方法目录,包括机器学习算法、线性回归、时间序列、统计推理等1。大多数R库都是用R编写的,但是对于繁重的计算任务,最好使用C、c++和Fortran代码1。原创 2023-10-11 11:22:18 · 611 阅读 · 0 评论 -
什么是GPT,初学者怎么使用并掌握Chat GPT工具
例如在科研编程、绘图领域: 1、编程建议和示例代码: 无论你使用的编程语言是Python、R、MATLAB还是其他语言,都可以为你提供相关的代码示例。2、数据可视化: 生成各种类型的数据可视化图表,如折线图、柱状图、散点图、饼图、热力图等。3、统计分析: 描述统计、假设检验、回归分析等,提供相关的建议和示例代码,帮助你理解和解释数据。7、科研方法论: 可以讨论和介绍科研的方法论,包括实验设计、数据采集、结果解释和报告撰写等方面的建议。13.14 (动手练习)Midjourney的参数和设置介绍。原创 2023-10-06 14:19:10 · 1151 阅读 · 0 评论 -
解密:GPT-4框架与训练过程,数据集组成,并行性的策略,专家权衡,推理权衡等细节内容
2023年3月14日,OpenAI发布GPT-4,然而GPT-4的框架没有公开,OpenAI之所以不公开GPT-4的架构,并不是因为存在对人类的潜在威胁,而是因为他们所建立的模型是可以被复制的。当然,OpenAI具有令人惊叹的工程能力,他们所构建的东西也是令人难以置信的,但是他们所采用的解决方案并非神奇。尽管大型模型需要多个芯片进行推理,并且较高的内存容量意味着它们能够适应更少的芯片,但实际上使用比所需容量更多的芯片更好,这样可以降低延迟,提高吞吐量,并使用更大的批处理大小以实现越来越高的利用率。转载 2023-10-06 14:10:40 · 418 阅读 · 0 评论 -
AI绘图:GPT4技术的艺术化呈现与无限可能
例如在科研编程、绘图领域: 1、编程建议和示例代码: 无论你使用的编程语言是Python、R、MATLAB还是其他语言,都可以为你提供相关的代码示例。2、数据可视化: 生成各种类型的数据可视化图表,如折线图、柱状图、散点图、饼图、热力图等。3、统计分析: 描述统计、假设检验、回归分析等,提供相关的建议和示例代码,帮助你理解和解释数据。7、科研方法论: 可以讨论和介绍科研的方法论,包括实验设计、数据采集、结果解释和报告撰写等方面的建议。15.5 (动手练习)使用Inpainting进行图像的局部重绘。原创 2023-10-06 14:05:46 · 425 阅读 · 0 评论 -
AI绘图:GPT4技术的艺术化呈现与无限可能
例如在科研编程、绘图领域: 1、编程建议和示例代码: 无论你使用的编程语言是Python、R、MATLAB还是其他语言,都可以为你提供相关的代码示例。2、数据可视化: 生成各种类型的数据可视化图表,如折线图、柱状图、散点图、饼图、热力图等。3、统计分析: 描述统计、假设检验、回归分析等,提供相关的建议和示例代码,帮助你理解和解释数据。7、科研方法论: 可以讨论和介绍科研的方法论,包括实验设计、数据采集、结果解释和报告撰写等方面的建议。13.14 (动手练习)Midjourney的参数和设置介绍。原创 2023-10-03 20:22:50 · 286 阅读 · 0 评论 -
GPT的优势和GPT缺点
GPT采用自监督学习的方式进行预训练,可以利用大量的文本语料库进行训练,进一步提高模型的自然语言理解和生成能力。随着训练的深入,GPT技术的语言生成质量也将不断提升。只能实现单向文本生成:与一些双向解码器(如BERT)不同,GPT采用单向的解码器,只能利用前面的上下文信息进行生成,无法利用后面的文本信息,因此其生成文本的连贯性和逻辑性可能不如双向解码器。总之,GPT技术是一项非常有用的人工智能技术,它具有极高的语言生成能力和自我训练能力,广泛应用于自然语言处理领域,并且在未来还将拥有更加广泛的应用前景。原创 2023-10-03 20:23:08 · 1117 阅读 · 0 评论 -
如何使用GPT引领前沿与应用突破之GPT4科研实践技术与AI绘图
例如在科研编程、绘图领域: 1、编程建议和示例代码: 无论你使用的编程语言是Python、R、MATLAB还是其他语言,都可以为你提供相关的代码示例。2、数据可视化: 生成各种类型的数据可视化图表,如折线图、柱状图、散点图、饼图、热力图等。3、统计分析: 描述统计、假设检验、回归分析等,提供相关的建议和示例代码,帮助你理解和解释数据。7、科研方法论: 可以讨论和介绍科研的方法论,包括实验设计、数据采集、结果解释和报告撰写等方面的建议。13.14 (动手练习)Midjourney的参数和设置介绍。原创 2023-09-04 18:30:42 · 796 阅读 · 0 评论 -
MATLAB 2023版的深度学习工具箱原理及应用
CNN提取的特征是怎样的?3、LeNet、AlexNet、Vgg-16/19、GoogLeNet、ResNet等经典深度神经网络的区别与联系。4、预训练模型(Alexnet、Vgg-16/19、GoogLeNet、ResNet等)的下载与安装。2、经典自编码器(栈式自编码器、稀疏自编码器、去噪自编码器、卷积自编码器、掩码自编码器等)6、调参技巧(参数初始化、数据预处理、数据扩增、批量归一化、超参数优化、网络正则化等)5、优化算法(梯度下降、随机梯度下降、小批量随机梯度下降、动量法、Adam等)原创 2023-07-21 16:49:59 · 1214 阅读 · 0 评论 -
基于R语言Meta分析与【文献计量分析、贝叶斯、机器学习等】多技术融合方法与应用
R语言拥有完整有效的数据处理、统计分析与保存机制,可以对数据直接进行分析和显示,命令格式简单、结果可读性强,包含众多针对Meta分析软件包,是进行Meta整合分析及评价的有效平台。从自编程计算到调用Meta包(meta、metafor、dmetar、esc、metasens、metamisc、meta4diag、gemtc、robvis、netmeta、brms等),全程分析如何进行meta计算、meta诊断、贝叶斯meta、网状meta、亚组分析、meta回归及作图。原创 2023-07-17 15:49:23 · 825 阅读 · 0 评论 -
VOSviewer软件的基础与应用
VOSviewer是一款免费且专业的文献计量分析软件,也是一个知识图谱可视化工具,由荷兰莱顿大学开发,主要用于构建和查看文献计量知识图谱,基于文献的共引和共被引原理,具有可视化能力强、适合于大规模样本数据的特点,并支持标签视图、密度视图、聚类视图和分散视图四种视图浏览方式,可以帮助用户轻松绘制各个知识领域的科学图谱。2 学科分布图绘制参数选择与解读关键。3 共现网络图绘制参数选择与解读关键。6 时间线图绘制参数选择与解读关键。4 聚类图绘制参数选择与解读关键。5 突现图绘制参数选择与解读关键。原创 2023-06-15 17:32:37 · 6446 阅读 · 0 评论 -
如何快速掌握Python 数据挖掘与机器学习
机器学习是人工智能的基础,因此,掌握常用机器学习算法的工作原理,并能够熟练运用Python建立实际的机器学习模型,是开展人工智能相关研究的前提和基础。1、遗传算法(Genetic Algorithm, GA)的基本原理(以遗传算法为代表的群优化算法的基本思想是什么?随机森林的本质是什么?3、Python基础(数据类型和变量、字符串和编码、list和tuple、条件判断、循环、函数的定义与调用等)7、坐标轴高阶应用(共享绘图区域的坐标轴、坐标轴刻度样式设置、控制坐标轴的显示、移动坐标轴的位置)原创 2023-05-29 18:16:52 · 459 阅读 · 0 评论 -
MATLAB助力生态环境时空数据分析【免费教程】
MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版本中也加入了对C,FORTRAN,C++,JAVA的支持。朱老师(副教授)∶劳伦斯伯克利国家实验室/科罗拉多州立大学博士后、长期从事生态遥感监测、湿地碳循环、生态模型、全球变化生态学等研究,基于无人机在生态环境中的应用具有丰富实践项目经验。原创 2023-03-27 17:52:02 · 626 阅读 · 0 评论 -
PyTorch机器学习与深度学习技术方法与案例实践应用
过拟合(Overfitting)与欠拟合(Underfitting)、泛化性能评价指标的设计、样本不平衡问题、模型评价与模型选择(奥卡姆剃刀定律)等)1、BP神经网络的基本原理(人工神经网络的分类有哪些?6、科学计算模块库(Numpy的安装;5、卷积神经网络调参技巧(卷积核尺寸、卷积核个数、移动步长、补零操作、池化核尺寸等参数与特征图的维度,以及模型参数量之间的关系是怎样的?4、张量(Tensor)的运算(加法、减法、矩阵乘法、哈达玛积(element wise)、除法、幂、开方、指数与对数、近似、裁剪)原创 2023-03-22 17:32:47 · 405 阅读 · 0 评论 -
【免费教程】 基于MATLAB图像处理基础及BP神经网络人脸朝向识别
MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。郁磊老师,副教授,主要从事MATLAB 编程、机器学习与数据挖掘、数据可视化和软件开发、生理系统建模与仿真、生物医学信号处理,具有丰富的实战应用经验,主编《MATLAB智能算法30个案例分析》、《MATLAB神经网络43个案例分析》相关著作。原创 2023-03-22 17:32:55 · 252 阅读 · 0 评论 -
【免费教程】徐同仁教授:地表水热通量的尺度扩展与数据同化技术
围绕地表水热通量的综合监测、陆面数据同化、尺度转换等方向,发表论文近百篇,授权2项国家发明专利,主持国家级自然科学基金项目3 项,获得教育部学术新人奖、教育部自然科学二等奖、地理信息科技讲步特等奖等, 入选科技部遥感青年创新资助计划,扫什国内外多个杂志的编委及客座编辑等。希望这里面有适合的学习内容,同时,我也希望这篇文章的内容对你有所帮助。基于Noah-MP模型的水-热-碳模拟与多源数据同化。后续会陆续更新更多的免费视频教程,敬请期待!原创 2023-02-13 14:52:26 · 136 阅读 · 0 评论 -
R语言贝叶斯参数估计、回归与计算
贝叶斯统计学是一门基本思想与传统基于频率思想的统计学完全不同的统计学方法;它以其灵活性和先进性在现代的统计学中占据着重要的地位。贝叶斯统计学是开展科学研究不可缺少的重要手段,但是,因为其思想、技术和方法都与传统统计学有着较大区别;且其计算中涉及马尔科夫、蒙特卡罗和吉布斯采样等现代计算方法,对使用者经验和能力构成了很大的挑战。8.4 M-H算法与吉布斯采样的组合。7.1 回归的本质与最小二乘法。4.1 均值与条件方差的推断。7.4 吉布斯采样与模型平均。2.2 泊松模型与后验分布。原创 2022-11-28 09:49:35 · 1246 阅读 · 0 评论 -
R语言的分位数回归
由于其基本假设的限制,包括线性回归及广义线性回归在内的各种常见的回归方法都有三个重大缺陷:(1)对于异常值非常敏感,极少量的异常值可能导致结果产生巨大的误差;(2)对数据的分布有着较为苛刻的要求,如果数据不符合指定的分布,结果同样是不可信的;分位数回归的出现较好的解决了第(1)和第(3)个问题,对不同分布数据也表现非常好的稳定性。分位数回归是一种较新的回归技术,在实践中与普通的线性回归有很大区别,在理论上比线性回归复杂很多。4.线性回归的推广与分位数函数。2.分位数回归结果的解释。3.贝叶斯分位数回归。原创 2022-11-25 15:56:56 · 649 阅读 · 0 评论 -
R语言的现代线性回归
1.定量与定性自变量。1.共线性与方差膨胀。3.方差估计与模型效用。1.系数估计与模型拟合。3.指数族分布的方差函数。1.线性回归模型与模型假定。5.加权最小二乘法与迭代加权最小二乘法。2.奇异值与强影响数据:失效点分析。4.连接函数:广义化与分布。2.最小二乘法方法与性质。4.稳健回归的自助标准误。2.矩估计与最大似然估计。4.决定系数与拟合优度。4.预测与外推的陷阱。五、通向广义线性回归。原创 2022-11-25 15:50:44 · 384 阅读 · 0 评论 -
R语言数据统计分析与ggplot2高级绘图
1.4 dplyr包与数据编辑。3.1 ggplot2包简介。1.3 R数据读取与重构。4.3 相关分析及可视化。2.1 试验设计简介。3.3 常见图形绘制。3.4 绘图参数设置。原创 2022-11-23 16:41:32 · 411 阅读 · 0 评论 -
MATLAB 2021b的机器学习、深度学习
1、深度学习与传统机器学习的区别与联系(神经网络的隐含层数越多越好吗?2、自编码器的变种(栈式自编码器、稀疏自编码器、去噪自编码器、卷积自编码器、掩码自编码器等)及其工作原理。为什么可以迁移学习?3、调参技巧(参数初始化、数据预处理、数据扩增、批量归一化、超参数优化、网络正则化等)2、优化算法(梯度下降、随机梯度下降、小批量随机梯度下降、动量法、Adam等)2、文件导入:mat、txt、xls、csv、jpg、wav、avi等格式。1. 支持向量机的基本原理(支持向量的本质、核函数的意义、SVM的启示等)原创 2022-11-23 14:53:21 · 912 阅读 · 0 评论 -
如何熟练掌握MATLAB机器学习、深度学习在图像中的处理
3、LeNet、AlexNet、Vgg-16/19、GoogLeNet、ResNet等经典深度神经网络的区别与联系。1、深度学习与传统机器学习的区别与联系(神经网络的隐含层数越多越好吗?5、预训练模型(Alexnet、Vgg-16/19、GoogLeNet、ResNet等)的下载与安装。2、图像的常见格式及读写(彩色图像、灰度图像、二值图像等)3、数据预处理(归一化、异常值剔除、数据扩增技术等)5、数字图像的几何变换(平移、镜像、缩放、旋转等)五、生成式对抗网络(GAN)及其在图像处理中的应用。原创 2022-11-22 16:05:59 · 1487 阅读 · 0 评论 -
MATLAB近红外光谱分析技术
1、主成分分析(PCA)、偏最小二乘(PLS)的基本原理(PCA与PLS的区别与联系;1、深度学习与传统机器学习的区别与联系(神经网络的隐含层数越多越好吗?2、BP神经网络参数的优化(隐含层神经元个数、学习率、初始权值和阈值等如何设置?3、MATLAB文件读写(mat、txt、xls、csv、jpg、wav、avi等格式)二。4、案例演示:一维卷积神经网络的MATLAB实现(基于卷积神经网络的近红外光谱建模)3、值得研究的若干问题(欠拟合与过拟合、泛化性能评价指标的设计、样本不平衡问题等)原创 2022-11-22 15:42:57 · 2433 阅读 · 0 评论 -
PyTorch深度学习
7、PyTorch常用工具包及API简介(torchvision(transforms、datasets、model)、torch.nn、torch.optim、torch.utils(Dataset、DataLoader))4、张量(Tensor)的运算(加法、减法、矩阵乘法、哈达玛积(element wise)、除法、幂、开方、指数与对数、近似、裁剪)CNN提取的特征是怎样的?2、张量(Tensor)的常用属性与方法(dtype、device、layout、requires_grad、cuda等)原创 2022-11-21 15:04:45 · 622 阅读 · 0 评论