积分非线性(Integral nonlinearity,INL)
积分非线性表示了ADC器件在所有的数值点上对应的模拟值和真实值之间误差最大的那一点的误差值,也就是输出数值偏离线性最大的距离。单位是LSB。例如,一个12bit的ADC,INL值为1LSB,那么,对应基准4.095V,测某电压得到的转换结果是1.000V,那么,真实电压值可能分布在0.999V到1.001V之间。
INL是DNL误差的数学积分,即一个具有良好INL的ADC保证有良好的DNL。
总之,非线性微分和积分是指代码转换与理想状态之间的差异。非线性微分(DNL)主要是代码步距与理论步距之差,而非线性积分(INL)则关注所有代码非线性误差的累计效应。对一个ADC来说,一段范围的输入电压产生一个给定输出代码,非线性微分误差为正时输入电压范围比理想的大,非线性微分误差为负时输入电压范围比理想的要小。从整个输出代码来看,每个输入电压代码步距差异累积起来以后和理想值相比会产生一个总差异,这个差异就是非线性积分误差。
与增益和偏移一样,计算非线性微分与积分误差也有很多种方法,代码平均和电压抖动两种方法都可以使用,但是由于存在重复搜索,当器件位数较多时这两种方法执行起来很费时。一个更加有效计算INL和DNL的方法是直方图法,采用线性或正弦直方图。图7说明了线性斜升技术的应用,首先使输入电压线性增加,同时对输出以固定间隔连续采样,电压逐步增加时连续几次采样都会得到同样输出代码,这些采样次数称为“
点击数
”。
从统计上讲,每个代码的点击数量直接与该代码的相应输入电压范围成正比,点击数越多表明该代码的输入电压范围越大,非线性微分误差也就越大;同样,代码点击数越少表明该代码输入电压范围越小,非线性微分误差也就越小。用数学方法计算,如果某个代码点击数为9,而“理想”情况下是8,则该器件的非线性微分误差就是(9-8)/8或0.125。非线性积分是所有代码非线性微分的累计值,对于斜升直方图,它就是每个非线性微分误差的和。从数学观点来看,非线性积分误差等于在代码X-1的非线性微分误差加上代码X和代码X-1的非线性微分误差平均值。
差分非线性(Differential Nonlinearity,DNL):理想刻度与实际刻度的偏差值。
ADC中的DNL:DNL(Differential Nonlinearity,微分非线性)误差定义为实际
量化
台阶与对应于1LSB的理想值之间的差异(见
图1a
)。对于一个理想ADC,其微分非线性为DNL = 0LSB,也就是说每个模拟量化台阶等于1LSB (1LSB = VFSR/2,其中VFSR为满量程
电压
,N是ADC的分辨率),跳变值之间的间隔为精确的1LSB。若DNL误差指标≤ 1LSB,就意味着传输函数具有保证的单调性,没有丢码。当一个ADC的数字量输出随着模拟输入信号的增加而增加时(或保持不变),就称其具有单调性,相应传输函数曲线的斜率没有变号。DNL指标是在消除了静态增益误差的影响后得到的。具体定义如下:
DNL = |[(VD+1- VD)/VLSB-IDEAL - 1] |,其中0 < D < 2- 2VD是对应于数字输出代码D的输入模拟量,N是ADC分辨率,VLSB-IDEAL是两个相邻代码的理想间隔。较高数值的DNL增加了量化结果中的噪声和寄生成分,限制了ADC的性能,表现为有限的信号-噪声比指标(
SNR
)和
无杂散动态范围
指标(SFDR)。
最低有效位LSB(lsb: least significant bit)
对于一个给定的数据串(整数),如二进制的1001或者十进制351,其最低有效位就是拥有最小单位数值的那一位。比如二进制1001的最右一位,拥有数值1,在该整数中代表最低位,该位的值可以决定整数是奇数(为1)还是偶数(为0)。十进制数同理。
一般lsb就是一个整数的最右一位,所以似乎该概念有些多余。但是凡事都有例外,某些数据传输或是处理器恰恰相反,最左一位是lsb,所以在计算领域就定义了这个最低有效位以明确说明数据格式。
(LSB: Least Significant Byte)最低有效字节
其意义和lsb类似,只是扩展到整个字节,以字节为最小单位来说明数据的顺序。
msb(most significant bit),即最高有效位,是一个整数数位中权重最高的那个,当然有时候该位也用作符号位,0为正,1为负,视编码标准而定。
MSB为最高有效字节,意义类似于LSB。
失调误差OFFSET ERROR
失调误差是指在输入为零电压时,采集获得的数字量并不为零,它与理想转移函数的零点总是差一个固定的量,这个量就是失调误差.失调误差是由信号调理电路、ADC内部转移电路和电源电压等因素造成的。
增益误差Gain ERROR
想必是实际增益和理论增益之间的偏差吧. 估计这应该是由反馈回路的参数误差, 放大器的特性等因素导致的.
增益只是个比值, 输出和输入信号的比值, 通过电阻网络的话, 增益小于 1 , 这也是增益.
增益只是个比值, 输出和输入信号的比值, 通过电阻网络的话, 增益小于 1 , 这也是增益.
LSB, MSB, offset error 分析
当选择模数转换器(ADC)时,最低有效位(LSB)这一参数的含义是什么?有位工程师告诉我某某生产商的某款12位转换器只有7个可用位。也就是说,所谓12位的转换器实际上只有7位。他的结论是根据器件的失调误差和增益误差参数得出的,这两个参数的最大值如下:
失调误差 =±3LSB,
增益误差 =±5LSB,
乍一看,觉得他似乎是对的。从上面列出的参数可知最差的技术参数是增益误差(±5 LSB)。进行简单的数学运算,12位减去5位分辨率等于7位,对吗?果真如此的话,ADC生产商为何还要推出这样的器件呢?增益误差参数似乎表明只要购买成本更低的8位转换器就可以了,但看起来这又有点不对劲了。正如您所判断的,上面的说法是错误的。
让我们重新来看一下LSB的定义。考虑一个12位串行转换器,它会输出由1或0组成的12位数串。通常,转换器首先送出的是最高有效位(MSB)(即LSB + 11)。有些转换器也会先送出LSB。在下面的讨论中,我们假设先送出的是MSB(如图1所示),然后依次送出MSB-1 (即 LSB + 10)和MSB -2(即LSB + 9)并依次类推。转换器最终送出MSB -11(即LSB)作为位串的末位。
LSB这一术语有着特定的含义,它表示的是数字流中的最后一位,也表示组成满量程输入范围的最小单位。对于12位转换器来说,LSB的值相当于模拟信号满量程输入范围除以2^12 或 4,096的商。如果用真实的数字来表示的话,对于满量程输入范围为4.096V的情况,一个12位转换器对应的LSB大小为1mV。但是,将LSB定义为4096个可能编码中的一个编码对于我们的理解是有好处的。
让我们回到开头的技术指标,并将其转换到满量程输入范围为4.096V的12位转换器中:
失调误差 = ±3LSB =±3mV,
增益误差 =±5LSB = ±5mV,
这些技术参数表明转换器转换过程引入的误差最大仅为8mV(或 8个编码)。这绝不是说误差发生在转换器输出位流的LSB、LSB-1、LSB-2、LSB-3、LSB-4、LSB-5、LSB-6和 LSB-7 八个位上,而是表示误差最大是一个LSB的八倍(或8mV)。准确地说,转换器的传递函数可能造成在4,096个编码中丢失最多8个编码。丢失的只可能是最低端或最高端的编码。例如,误差为+8LSB ((+3LSB失调误差) + (+5LSB增益误差)) 的一个12位转换器可能输出的编码范围为0 至 4,088。丢失的编码为4088至4095。相对于满量程这一误差很小仅为其0.2%。与此相对,一个误差为-3LSB((-3LSB失调误差)(-5LSB增益误差))的12位转换器输出的编码范围为3至4,095。此时增益误差会造成精度下降,但不会使编码丢失。丢失的编码为0、1和2。这两个例子给出的都是最坏情况。在实际的转换器中,失调误差和增益误差很少会如此接近最大值。
共模抑制比CMRR
共模抑制比 ,英文全称是Common Mode Rejection Ratio,因此一般用简写CMRR来表示 为了说明差动放大电路抑制 共模信号 的能力,常用共模抑制比作为一项技术指标来衡量,其定义为放大器对差模信号的电压放大倍数Aud与对共模信号的电压放大倍数Auc之比. 差模信号电压放大倍数Aud越大,共模信号电压放大倍数Auc越小,则CMRR越大。此时差分放大电路抑制共模信号的能力越强,放大器的性能越好。当差动放大电路完全对称时,共模信号电压放大倍数Auc=0,则共模抑制比CCMR→∞,这是理想情况,实际上电路完全对称是不存在的,共模抑制比也不可能趋于无穷大。EOC
end of Convert
CSF
falling edge of CS
TAG
AD数据标签 在AD返回结果中 插入的标签位。如16位双通道AD 返回结果在第17位表示采集的是第0/1个通道