1, 精度是接近真实值的程度, 即绝对误差或相对误差的大小.精度做到0.01%极其难
2, 分辩率是量化刻度的细度大小,分辩率做到0.00001%不很难(如24位A/D,0.0000056%)
3, 概念理解:
例1:一把1米的软尺,有1000个刻度,分辩率1毫米(分辩率0.1%),用标准尺量下绝对误差+5毫米,精度+0.5%。如果能把尺拉长20毫米,此时绝对误差+25毫米,精度降为2.5%, 可是尺还是1000个刻度,其分辨率还是1毫米(0.1%).
例2:两杆称来称真重1克的物体, 一杆的结果为1.03克, 另一杆的结果为0.8333333333333333333333333克, 哪个准呢?
4, 关系
分辩率高是精度高的必要条件,不是充分条件;分辩率高不等于精度高. 认定精度才是王道.
“精度”是用来描述物理量的准确程度,其反应的是测量值与真实值之间的误差,而“分辨率”是用来描述刻度划分的,其反应的是数值读取过程中所能读取的最小变化值。简比喻:一把常见的量程为10厘米的刻度尺,上面有100个刻度,最小能读出1毫米的有效值。那么我们就说这把尺子的分辨率是1毫米,他只能1、2、3、4……100这样读值;而它的实际精度就不得而知了,因为用这把尺读出来的2毫米,我们并不知道他与真实绝对的2毫米之间的误差值。而当我们用火来烤一下它,并且把它拉长一段,然后再考察一下它。我们不难发现,它还有100个刻度,因而它的“分辨率”还是1毫米,跟原来一样!然而,它的精度显然已经改变了。
对于编码器来说,“分辨率”除了与刻线数有关外,还会因电气信号方面的影响而改变,它是可调的,可控的,它可以随着对信号的细分而改变,细分倍数越高,分辨率越小,但是细分倍数越高,引入加大的误差就越大。而精度,更多的偏向于机械方面,一个产品生产出来后,他的精度基本已经固定(有些高精度的产品可以对信号进行补偿等来提高精度),这个数值是通过检测出来的,它与产品的做工,材料等综合性能息息相关,我们难以通过计算来得出一个具体的数值作为精度的依据,大多只能在使用的过程当中判断出精度的好坏来。
例如,对于13bit的,其码盘上的绝对位置数为:8192,则:计算出的分辨率为158角秒,也就是说,在读取数值的时候,要求数值间的跳动是158角秒,如果要读取的第一个数值是0,则第二个读取的数值要大于158,若要小于158,则我们需要选取更小的分辨率。当要读取158这个数值的时候,由于误差的存在,并不可能得到绝对的158秒,编码器所读取出来的158秒与绝对真实158秒之间的误差,就取决于精度了。所以说,精度,是在分辨率的基础上来谈的。
而并非越细分得到小的分辨率就越好,因为细分会引入误差和扩大误差,过度的细分将无法保证精度!需要多少倍的细分,能做到多少倍的细分,前提必须是在保证精度的基础上进行的,因为精度在使用前的不可见性而高倍细分是不负责任的。码盘质量越高,刻线越好,信号质量信号越好,细分后产生的误差就越小,这受到一台编码器综合性能的影响,这也就是为什么会在相同的参数下,会有不同品牌,不同价位编码器的一个原因。
例如,我们要读取的数值为1、2、4、7、8,我至少要选择1个单位的分辨率,选择2个单位的分辨率是显然不行的,因为我们读出了1这个数值,则2是读不出来的,在选择1个单位分辨率的基础上,我们读出来的1与真实绝对的1的误差就是精度。机床上的数控系统对于直光栅是有分辨率的设定的,需要读取的数值间隔小于分辨率,机床就有可能会抖动或出错等。
对于绝对式带增量信号编码器,能够精确的保持串行传输的绝对位置值与增量值同步,绝对值确切的对应一个增量信号,位置值一定在一个增量信号的正弦周期之内。如13位绝对式,带512线的增量信号,绝对位置间隔158秒,若要读取两个码盘位置中间的一个位置是不合适的,但是,我们可以通过对其所带的1Vpp增量信号进行细分,如细分100倍,则相当于在两个绝对位置之间又引入了几个细分后的位置,我们可以在绝对位置值的基础上,通过计算细分后的增量脉冲数而读取两个绝对位置之间的一个位置值,如:512线细分100倍,绝对位置1数值是0,绝对位置2数值是158,则读取这两个位置间的位置可以在位置1:数值0的基础上多出一个脉冲则是25,两个则是25x2=50……但是,带增量信号的绝对式编码器本身是不带细分的,这就要求用户能自行的对增量信号进行细分处理。