训练过程不可复现原因解决

博客讨论了深度学习模型复现性的问题,指出即使在同一台电脑上,由于随机种子未固定,结果也可能不一致。通过设定随机种子、禁用CUDNN benchmark并确保deterministic为True,可以在一定程度上改善复现性。然而,不同平台和GPU之间的差异仍可能导致结果变化。文章强调,论文复现性困难,比赛过程中应尽量在同一设备上进行,以保持数据稳定性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天在打比赛的过程中,发现代码不能够复现是一个很头痛的问题,相同的代码在同样的电脑上跑两次结果不一样,查阅资料之后发现,可以通过如下的方式解决:

torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)  # if you are using multi-GPU.
np.random.seed(seed)  # Numpy module.
random.seed(seed)  # Python random module.
torch.manual_seed(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True

固定了随机种子之后,相同的电脑上重复实验两次,可以得到相同的结果。
接下来在不同的电脑上进行实验过程,发现不同的gpu训练之后得到的结果并不相同,在网上找到了相应的解答

还有一种可能性,假如你在不同平台上,或者不同GPU,CPU上跑模型的话,
那么就算前面的benchmark、deterministic、种子全部都设置对了的话都会导致训练结果不同。
因为pytorch是基于CUDA API的,CUDA在不同设备上的伪随机数生成器不会是完全一样的,
这是由设备决定的。

综上所述,其实论文的实验结果是很难进行复现的,因为你不知道它用的是怎样的种子,什么样的平台,哪种型号的gpu等等各种各样的信息,所以论文复现基本上是不可能实现的。
另外一个很重要的点在于,如果是打相应的算法比赛,打比赛的过程中需要固定使用一台电脑,即使换电脑也要使用型号差不多的gpu来运行,这样才能保证打比赛的过程之中同一种模型的数据情况不会发生波动,否则自己的模型效果忽上忽下,容易影响比赛最终的结果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值