DFT、DTFT的区别与联系及其物理意义

数字频率的归一化

这张图中,T代表的是采样间隔。x(0)=xa(0*T),x(1)=xa(1*T)

实现模拟信号到序列

这个图中有个很重要很重要的信息!就是链接模拟世界与数字世界的桥梁!即,采样周期的归一化

如果我们对真实(模拟世界的)采样信号进行FT,得到的频域如上图FT[xa(nT)],频域是以2*PI/T进行周期延拓。但是现在,假如我把采样间隔当作单位1,FT[xa(nT)]就变成了FT[xa(n)],也就可以看作FT[x(n)],此时频域就相当于2*PI/T=1=2*PI,毕竟采样周期我们都可以当作单位1来处理,在任何一个采样周期中,我们把采样周期T/T,相当于单位化了,这个时候频域自然而然的出现了周期为2*PI的频域,数字频域周期性来源于此。

本来模拟世界就相当于无穷多个正弦波的叠加,我用ADC采样在数字频域中w代表的是相邻两个采样点间相位的变换。还可以理解为,在数字频域中,对于某个频率分量而言,ADC采样间隔T之内,各个分量分别发生了多少相位的变换,这就是数字频域中代表的物理意义

那么数字高频PI,代表什么呢

我想,应该是这样的

对于PI而言,相当于有某个频率分量在采样间隔内发生了相位PI的转变,而我们刚好采到它了,此(PI)以后不存在频率分量了(内奎斯特限制)那么采样间隔T内发生PI相位变化的分量自然就是最高的频率分量

现在考虑下DTFT的物理意义

先注意一点,数字频域与模拟频域绝对可以相互转化,方法就是在于乘上一个T(采样间隔,因为模拟到数字的时候是除以T)

现在来讨论DFT中exp(-j2*PI*k*n/N)代表的意思

首先2*PI/N在频域中代表在采样间隔内,相位变化2*PI/N的分量(n从0到N-1一个一个遍历,全部都得找出来),这代表此次采样中所能捕捉到的变化最“细致”的分量,那么显然,此次所捕捉到的变化最细微的就是低频(想想奈奎斯特),然后找到这个相位变化2*PI/N量后, 乘以T就变化到模拟域了(即图1),也就的出来低频分量占了多少。

然后来讨论k,k在这里仅仅代表遍历,因为此次采样相位变化的“分辨率”是2*PI/N,那么k从0~N-1不就是从分辨率最高到最低的过程吗,如果乘上T,不就是从0~2*PI/T(采样后的模拟域)。那么在这个遍历的过程中(每对一个k,都要将n从头遍历到N-1,以查看是否有合适的分量),以此来得到数字频域。

DTFT与DFT的区别与联系

DFT的频谱是离散的,它只能捕捉到or采集到特定相位变化的频率分量,所以采的越多,可以捕捉到更细微的相位变化的分量,N趋向于无穷大时,DFT可以无限趋进于DTFT
所以说在DFT中2*PI*k/N当k最大的时候,DFT的分辨率也就是2PI,即DTFT兼容DFT,即使DFT的周期是N,这只是对于采样点而言,通过公式2*PI*k/N,可以看出来采了N个点的DFT所能采集到最大的相位变化分量还是不会超过2PI

DFT是对DTFT连续频谱的离散取样(采样)N越大,取样点越多,越接近于DTFT

文章参考:为什么说在数字角频率中:π附近的频率分量就是高频分量?_离散π对应高频-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值