机器学习笔记一

机器学习笔记一

算法学习的主要方法
k-临近算法线性回归
朴素贝叶斯算法局部加权线性回归
支持向量机Ridge回归
决策树Lasso最小回归系数估计
k-均值最大期望算法
DBSCANParzen窗设计

机器学习主要步骤:

  • 收集数据
  • 准备输入数据
  • 分析输入数据
  • 训练算法
  • 测试算法
  • 使用算法

k-近邻算法

算法思路:

算法很普通,对于输入的数据,与已有的数据样本进行匹配,根据匹配算法将匹配度最高的前k个数据取出,选择在k个中出现频率最高的数据结果分类作为输入数据的结果分类。

简而言之,就是找最像的。

算法步骤:
  1. 计算已知类别数据集中的点和当前点的距离
  2. 按照距离递增次序排序
  3. 选取与当前距离最小的k个点
  4. 确定前k个点所在类别的出现频率
  5. 返回预测的类别类型
举例:
数据值类别
1,1A
1.1,1A
2,2B
1.9,2.1B
1.1,1.1?

这里度量函数选择每一个数据点在二维平面之间的距离,k取2(一般不超过20)

对第一个点计算距离: l1=sqrt(0.12+0.12)

根据 l 的大小排序,可得,根据这个预测方法得到预测点为A类型。

算法特点

  • 优点:精度高,对异常值不敏感,无输入数据假定
  • 缺点:计算复杂度高,空间复杂度高,无法’理解‘数据本质,无法给出基础的结构信息,无法知晓样本和典型实例样本具有什么特征。
  • 适用数据范围:数值型和标称型

决策树

算法思路:

根据训练数据的各种特性将数据分类,然后根据熵(集合中数据的不一致性)决定划分的先后顺序,最后得到一颗树,类似与带终止模块的流程图,从上向下开始走。

划分数据集的大原则:将无序数据变得有序。

信息增益:在划分数据集前后信息发生的变化,为信息增益。

熵的概念:集合信息的度量方式称为香农熵,简称熵。 是信息的期望值。

l(xi)=log2p(xi) => xi 的信息定义, p(xi) 是选择分类的概率

H=SGM[n,..1]p(xi)log2p(xi) ,SGM是求和符号,这个公式为何要有 (log2p(xi)) ,反正记住这是香农大佬发明的衡量信息熵的公式,熵越高,表示数据越混乱。

基尼不纯度:度量被错误分类到其他分组的概率

算法步骤:
  • 划分数据集,根据熵值的大小构建决策树,构建时,优先选择熵值小的划分
  • 然后就可以根据决策树进行比对,获得数据分类结果
举例:
from math import log
import operator
import matplotlib.pylab as plt


def calcShannonEnt(dataSet): #计算熵值
    numberEntries = len(dataSet)
    labelCounts = {}
    for featVec in dataSet:
        # print(featVec)
        curLabel = featVec[-1]
        if curLabel not in labelCounts.keys():
            labelCounts[curLabel] = 0
        labelCounts[curLabel] += 1
    shannonEnt = 0.0
    for key in labelCounts:
        prob = float(labelCounts[key]) / numberEntries;
        shannonEnt += prob * log(prob, 2)
    return shannonEnt


def createDataSet():
    dataSet = [[1, 1, 'yes'],
                [1, 1, 'yes'],
                [1, 0, 'no'],
                [0, 1, 'no'],
                [0, 1, 'no']]
    labels = ['no surfacing', 'flippers']
    return dataSet, labels


# axis is the split index, values is the split value at the index
def splitDataSet(dataSet, axis, values):
    retDataSet = []
    for featVec in dataSet:
        # print( featVec[axis] )
        if featVec[axis] == values:
            reducedFeatVec = featVec[: axis]
            reducedFeatVec.extend(featVec[axis + 1:])
            retDataSet.append(reducedFeatVec)
    return retDataSet


def chooseBestFeatureToSplit(dataSet):  #根据熵选择最佳的划分元素
    numberFeatures = len(dataSet[0]) - 1
    baseEntropy = calcShannonEnt(dataSet)
    bestInfoGain = 0.0; bestFeature = -1
    for i in range(numberFeatures):
        featList = [example[i] for example in dataSet]
        uniqueVals = set(featList)
        newEntropy = 0.0
        for value in uniqueVals:
            subDataSet = splitDataSet(dataSet, i, value)
            prob = len(subDataSet) / float(len(dataSet))
            newEntropy += prob * calcShannonEnt(subDataSet)
        infoGain = newEntropy - baseEntropy
        if infoGain > bestInfoGain:
            bestInfoGain = infoGain
            bestFeature = i
    return bestFeature


def majoriatyCnt(calssList):    #返回出现频率最高的特征
    classCount = {}
    for vote in classList:
        if vote not in classCount.keys():
            classCount[vote] = 0
        classCount[vote] += 1
    SortedClassCount = sorted(classCount.iteritems(),
                              key=operator.itemgetter(), reverse=True)
    return SortedClassCount[0][0]


def createTree(dataSet, labels):  #构建决策树,使用递归的方式
    classList = [example[-1] for example in dataSet] 
    #print("classList: "); print(classList)
    if classList.count(classList[0]) == len(classList): #剩余为同样的元素
        return classList[0]
    #print("dataSet"); print(dataSet[0]); print("len: "); print(len(dataSet[0]))
    if len(dataSet[0]) == 1:  #到最底层了,无法递归
        return majoriatyCnt(classList)
    bestFeat = chooseBestFeatureToSplit(dataSet)
    bestFeatLabel = labels[bestFeat]
    myTree = {bestFeatLabel: {}}
    del(labels[bestFeat])
    featvalues = [example[bestFeat] for example in dataSet]
    uniqueVals = set(featvalues)
    for value in uniqueVals:
        subLabel = labels[:]
        myTree[bestFeatLabel][value] = createTree(
            splitDataSet(dataSet, bestFeat, value), subLabel)
    return myTree

#以下代码为绘制决策树的代码,本人不是很特别懂,可以照猫画虎
def getNumLeafs(myTree):
    numLeafs = 0
    keys = list( myTree )
    #print("keys:");print(keys)
    firstStr = keys[0]
    #print("firstStr:");print(firstStr);print("MyTree:"); print(myTree)
    secondDict = myTree[firstStr]
    for key in secondDict.keys():
        if type( secondDict[key]).__name__ == 'dict':   #the key's value is collection!
            #print("secondDict");print(secondDict[key])
            numLeafs += getNumLeafs( secondDict[key] )
        else:
            numLeafs += 1
    return numLeafs

def plotNode(nodeTxt , centerPt , parentPt , nodeType):
    createPlot.axl.annotate( nodeTxt, xy= parentPt , xycoords= "axes fraction" , xytext= centerPt , textcoords= "axes fraction" ,va= "center" , ha= "center" , bbox = nodeType , arrowprops= arrow_args)

def getTreeDepth(myTree):
    maxDepth = 0
    keys = list(myTree)
    firstStr = keys[0]
    secondDict = myTree[firstStr]
    for key in secondDict.keys():
        if type( secondDict[key] ).__name__ =='dict':
             thisDepth = 1 + getTreeDepth( secondDict[key] )
        else:
            thisDepth = 1
        if thisDepth > maxDepth : maxDepth = thisDepth
    return maxDepth

def plotMidText(cntrPt, parentPt , txtString):
    xMid = ( parentPt[0] - cntrPt[0] )/2.0 + cntrPt[0]
    yMid = ( parentPt[1] - cntrPt[1] )/2.0 + cntrPt[1]
    createPlot.axl.text(xMid , yMid , txtString)

def plotTree(myTree , parentPt , nodeTxt):
    numLeafs = getNumLeafs(myTree)
    depth = getTreeDepth(myTree)
    firstStr = list(myTree.keys())[0]
    cntrPt = ( plotTree.xOff + (1.0 + float(numLeafs) )/2.0 / plotTree.totalW , plotTree.yOff )
    plotMidText( cntrPt ,  parentPt , nodeTxt )
    plotNode( firstStr , cntrPt , parentPt , decisionNode )
    secondDict = myTree[firstStr]
    plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD
    for key in secondDict.keys():
        if type( secondDict[key] ).__name__ =='dict':
            plotTree(secondDict[key] , cntrPt , str(key) )
        else:
            plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW
            plotNode ( secondDict[key] , ( plotTree.xOff , plotTree.yOff ), cntrPt , leafNode )
            plotMidText ( (plotTree.xOff , plotTree.yOff), cntrPt , str(key) )
    plotTree.yOff = plotTree.yOff + 1.0 / plotTree.totalD

def createPlot(inTree):
    fig = plt.figure( 1 , facecolor = 'white' )
    fig.clf()
    axprops = dict( xticks=[] , yticks=[] )
    createPlot.axl = plt.subplot(111 , frameon=False , **axprops)
    plotTree.totalW = float( getNumLeafs(inTree) )
    plotTree.totalD = float( getTreeDepth(inTree) )
    plotTree.xOff = -0.1 /plotTree.totalW; plotTree.yOff = 1;
    plotTree( inTree ,(0.5 ,0.5) ,'' )
    plt.show()

decisionNode = dict( boxstyle = "sawtooth" , fc = "0.8" )
leafNode = dict( boxstyle = "round4" ,fc = "0.8" )
arrow_args=dict( arrowstyle = "<-" )
dataSet,labels = createDataSet()
# print( dataSet )
# shannonEnt = calcShannonEnt(dataSet)
# print( shannonEnt )
# bestFeature = chooseBestFeatureToSplit( dataSet )
# print(bestFeature)
# splitDataSet = splitDataSet(dataSet , bestFeature , 1)
# print( splitDataSet )
myTree = createTree(dataSet,labels)
print(myTree)
createPlot(myTree)
算法特点:
  • 优点:在数据表示形式上特别容易理解。计算复杂度不高,输出结果易于理解,对中间值的缺少不敏感,可以处理不相关特征数据。
  • 缺点:可能会有过度匹配的问题,会产生大量的匹配节点,使分类繁杂。
  • 适用数据范围:数值型和标称型
算法精髓:

个人理解,此算法的精髓在于根据熵值划分集合,使得分类的集合可以按照某种特性分开,简单易于理解

机器学习的主要任务是分类

本说明–文章是学习《机器学习实战》-人民邮电出版社后个人的理解笔记或者摘抄,作为本人笔记,也作为他人的理解参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值