目录
- PyTorch深度学习框架安装说明
- 台式NVIDIA GeForce显卡驱动程序560.94
- 笔记本Nvidia VGA Driver 独立显卡驱动560.94
- 一、安装步骤大纲
- 二、NVIDIA CUDA Toolkit12.6.3+cudnn软件安装
- cuda_12.6.3_561.17_windows 的下载地址:
- 深度神经网络库 cuDNN 9.2.0 的下载地址:
- 三、Anaconda3 + python3 软件安装
- Anaconda3-5.3.0-Windows-x86_64.exe
- 四、Pytorch2.6 软件安装
- 用迅雷下载torch2.6包到D盘根目录
PyTorch深度学习框架安装说明
PyTorch网站
https://pytorch.org/get-started/locally/
最新稳定版本 PyTorch2.6 支持系统有:Linux系统、Win10和Win11系统,但不支持苹果Mac系统。推荐系统:Windows10-22H2版本(版本号19045),Windows11-23H2版本(版本号22631)。
目前只能用pip3包管理命令安装pytorch:
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu126
根据安装说明,PyTorch2.6需要Python 3.9或更高版本,计算平台推荐CUDA12.6,也就是你需要一台带NVIDIA独立显卡的电脑(16系或20系Turing图灵架构显卡以及Ampere安培架构等新款显卡)。
第一次接触Pytorch的朋友最头疼就属软件依赖关系,我推荐大家安装NVIDIA显卡驱动版本560.94,目前560.94驱动程序的CUDA12.6最稳定,游戏也最稳定,不要安装最新的显卡驱动版本572.83。确定了显卡驱动版本就确定了CUDA版本,后面就顺了。
我给大家捋一下Pytorch(torch2.6包)依赖关系顺序(推荐版本):Windows系统版本Win10-22H2——NVIDIA显卡驱动版本560.94(CUDA12.6)——CUDA Toolkit版本12.6.3——cuDNN版本9.2.0 12.X——Python版本3.10或更高版本(除了最新3.13)
因为pytorch属于python的第三方包,所以安装Anaconda3包管理器可以一并安装python3和pip3,学习python必备Anaconda3。
请各位提前安装好迅雷,方便高速下载,保存目录设置在D盘根目录,或者其他空间大的盘。
首先是安装好正确的显卡驱动版本:
台式NVIDIA GeForce显卡驱动程序560.94
笔记本Nvidia VGA Driver 独立显卡驱动560.94
联想拯救者独立显卡下载地址:点击下载
联想官网下载网页
https://newsupport.lenovo.com.cn/driveDownloads_detail.html?driveId=136388
在设备管理器查看“显示适配器”的驱动程序版本,版本尾数5位是5.6094就是成功安装NVIDIA560.94独立显卡驱动。
由于每款笔记本都是厂家定制的显卡驱动程序,请使用其他品牌笔记本电脑的同学到各自厂家的官网下载NVIDIA独显驱动程序,不要用NVIDIA官网的公版显卡驱动。
一、安装步骤大纲
总体分3个安装步骤,NVIDIA软件,Anoconda软件,Pytorch软件。
- 安装NVIDIA 独立显卡驱动 560.94,文件大小:701MB
- 安装NVIDIA CUDA Toolkit 12.6.3文件大小:3.00GB
- 下载解压NVIDIA cuDNN9.2.0 文件大小:536MB (cudnn8.9.7需要注册,文件大小:675MB)
- 安装Anoconda3-5.3.1,文件大小:632MB
- 设置conda清华镜像(不用,可能导致创建conda虚拟环境报错失败)
- 设置全局pip清华镜像源
- conda创建python3.10虚拟环境(3.11、3.12也可以,不用最新3.13)
- 根据你选择的python版本,直接通过官网https://download.pytorch.org/whl/cu126 下载对应版本的torch包(文件大小:2.32GB,用迅雷下载更快)
二、NVIDIA CUDA Toolkit12.6.3+cudnn软件安装
安装完NVIDIA 独立显卡驱动,可以打开CMD(命令提示符),
输入命令nvidia-smi
命令显示结果
Driver Vsrsion 显卡版本是560.94
CUDA Version CUDA版本是12.6
CUDA Toolkit版本要等于小于显卡驱动的CUDA12版本,因此下载CUDA Toolkit12.6.3和 cuDNN9.2.0 12.X
对于已经安装NVIDIA显卡驱动的同学,只要你的NVIDIA显卡是16系或20系30系以及40系的显卡,都建议使用560.94显卡驱动,可以省去很多麻烦。
CUDA工具包网站
https://developer.nvidia.com/cuda-toolkit-archive
cuda_12.6.3_561.17_windows 的下载地址:
深度神经网络库 cuDNN 9.2.0 的下载地址:
中文官网 https://developer.nvidia.cn/cudnn/
首先自定义安装CUDA,仅安装第一项CUDA,其他组件不安装。
安装目录更改为 D:\CUDA 或者其他空间大的盘,
然后解压cudnn,把里面的所有文件都移动到CUDA安装目录内。
不用重启电脑,CUDA自动会添加环境变量
查看环境变量方法:鼠标右击“视窗开始按钮”——“系统”——“高级系统设置”——“环境变量”——“系统变量”,
可以看到系统变量里面已经有“CUDA_PATH”和“CUDA_PATH_V12_6” 两个变量。
然后在搜索栏输入CMD 开“命令提示符”输入命令 nvcc -V
有显示Build cuda_12.6, 表示CUDA安装成功!
Win11系统显示如下
三、Anaconda3 + python3 软件安装
Anaconda3-5.3.0-Windows-x86_64.exe
Anaconda3-5.3.0(自带python3.7,文件大小632MB) 下载地址: 点击下载
可以通过conda虚拟环境安装python任意版本,所以目前选择这个版本。
你也可以用最新的 Anaconda3-2024.10-1-Windows-x86_64.exe ,自带python3.12,
文件大小:950MB,下载地址:点击下载
Anaconda清华镜像站 https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/
1. 安装Anaconda3-5.3.0。
安装目录更改为 D:\Anaconda3 或者其他空间大的盘。
Win10要勾选2个安装选项,Win11直接下一步,提示安装VS Code可以跳过,用电脑管家安装VS Code
2. 设置conda清华镜像(跳过这个步骤)
在程序中打开 Anaconda Prompt
添加conda清华镜像下载通道命令:(不用,可能导致创建conda虚拟环境失败)
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
启用通道命令:
conda config --set show_channel_urls yes
conda config --set ssl_verify false
显示通道命令: conda config --show channels
如果创建conda虚拟环境时已经出现报错,请删除所有镜像通道。
删除通道命令: conda config --remove-key channels
3. 创建pytorch虚拟环境,使用python3.10版本
在程序中打开 Anaconda Prompt
创建环境命令: conda create -n pytorch python=3.10
这样就创建pytorch名字的conda虚拟环境,使用的是python3.10。
系统生成虚拟环境目录 D:\Anaconda3\envs\pytorch
激活环境命令: conda activate pytorch
显示环境列表命令: conda env list
删除环境命令: conda env --remove pytorch
四、Pytorch2.6 软件安装
1.设置全局 pip 源:
全局pip清华镜像源命令:
pip config set global.index-url https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple
2. 检查全局 pip 源命令:
pip config list
3. 下载pytorch2.6包
升级pip包管理工具命令: python -m pip install --upgrade pip
pytorch官网的安装命令:
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu126
这个命令告诉我们pytorch2.6是3个包组成: torch、torchvision、torchaudio,由于torch包有2.32G很大,外网下载慢,且清华镜像没有起到加速作用,因此我们先用迅雷提前下载torch2.6包,然后安装。
用迅雷下载torch2.6包到D盘根目录
torch下载网页 :https://download.pytorch.org/whl/torch/
这里要下载和虚拟环境相同 python3.10版本的torch包
文件名:torch-2.6.0+cu126-cp310-cp310-win_amd64.whl
在下载网页中按Ctrl+F,复制文件名,快速找到需要的torch包,
然后右击文件名复制链接,用迅雷下载到D盘根目录。
4. 开始安装torch包
首先激活pytorch环境命令: conda activate pytorch
然后进入D盘根目录命令 d:
查看文件命令 dir
确保看到 torch-2.6.0+cu126-cp310-cp310-win_amd64.whl 安装包
安装torch包命令: pip3 install torch-2.6.0+cu126-cp310-cp310-win_amd64.whl
安装另外2个包命令:
pip3 install torchvision torchaudio --index-url https://download.pytorch.org/whl/cu126
5. 查看包列表命令:conda list
这里看到torch 2.6.0+cu126 表示安装完成。
6. 最后验证pytorch
首先输入命令:python
启动python3.10
然后输入命令:
import torch
print(torch.__version__)
print(torch.cuda.is_available())
print(torch.version.cuda)
显示2.6.0+cu126 表示 PyTorch2.6 安装成功!
Ture表示cuda运行。
12.6表示cuda版本。