PyTorch2.6详细安装步骤(Win10和Win11):NVIDIA显卡驱动版本560.94+CUDA12.6+cuDNN9.2.0+Anaconda3+pip清华镜像源

目录

  • PyTorch深度学习框架安装说明
      • 台式NVIDIA GeForce显卡驱动程序560.94
      • 笔记本Nvidia VGA Driver 独立显卡驱动560.94
  • 一、安装步骤大纲
  • 二、NVIDIA CUDA Toolkit12.6.3+cudnn软件安装
      • cuda_12.6.3_561.17_windows 的下载地址:
      • 深度神经网络库 cuDNN 9.2.0 的下载地址:
  • 三、Anaconda3 + python3 软件安装
      • Anaconda3-5.3.0-Windows-x86_64.exe
  • 四、Pytorch2.6 软件安装
      • 用迅雷下载torch2.6包到D盘根目录

PyTorch深度学习框架安装说明

PyTorch网站
https://pytorch.org/get-started/locally/
在这里插入图片描述

最新稳定版本 PyTorch2.6 支持系统有:Linux系统、Win10和Win11系统,但不支持苹果Mac系统。推荐系统:Windows10-22H2版本(版本号19045),Windows11-23H2版本(版本号22631)。

目前只能用pip3包管理命令安装pytorch:
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu126

根据安装说明,PyTorch2.6需要Python 3.9或更高版本,计算平台推荐CUDA12.6,也就是你需要一台带NVIDIA独立显卡的电脑(16系或20系Turing图灵架构显卡以及Ampere安培架构等新款显卡)。

第一次接触Pytorch的朋友最头疼就属软件依赖关系,我推荐大家安装NVIDIA显卡驱动版本560.94,目前560.94驱动程序的CUDA12.6最稳定,游戏也最稳定,不要安装最新的显卡驱动版本572.83。确定了显卡驱动版本就确定了CUDA版本,后面就顺了。

我给大家捋一下Pytorch(torch2.6包)依赖关系顺序(推荐版本):Windows系统版本Win10-22H2——NVIDIA显卡驱动版本560.94(CUDA12.6)——CUDA Toolkit版本12.6.3——cuDNN版本9.2.0 12.X——Python版本3.10或更高版本(除了最新3.13)

因为pytorch属于python的第三方包,所以安装Anaconda3包管理器可以一并安装python3和pip3,学习python必备Anaconda3。

请各位提前安装好迅雷,方便高速下载,保存目录设置在D盘根目录,或者其他空间大的盘。

首先是安装好正确的显卡驱动版本:

台式NVIDIA GeForce显卡驱动程序560.94

下载地址:点击下载 https://cn.download.nvidia.com/Windows/560.94/560.94-desktop-win10-win11-64bit-international-dch-whql.exe
在这里插入图片描述

笔记本Nvidia VGA Driver 独立显卡驱动560.94

联想拯救者独立显卡下载地址:点击下载

联想官网下载网页
https://newsupport.lenovo.com.cn/driveDownloads_detail.html?driveId=136388

在设备管理器查看“显示适配器”的驱动程序版本,版本尾数5位是5.6094就是成功安装NVIDIA560.94独立显卡驱动。

在这里插入图片描述

由于每款笔记本都是厂家定制的显卡驱动程序,请使用其他品牌笔记本电脑的同学到各自厂家的官网下载NVIDIA独显驱动程序,不要用NVIDIA官网的公版显卡驱动。

一、安装步骤大纲

总体分3个安装步骤,NVIDIA软件,Anoconda软件,Pytorch软件。

  1. 安装NVIDIA 独立显卡驱动 560.94,文件大小:701MB
  2. 安装NVIDIA CUDA Toolkit 12.6.3文件大小:3.00GB
  3. 下载解压NVIDIA cuDNN9.2.0 文件大小:536MB (cudnn8.9.7需要注册,文件大小:675MB)
  4. 安装Anoconda3-5.3.1,文件大小:632MB
  5. 设置conda清华镜像(不用,可能导致创建conda虚拟环境报错失败)
  6. 设置全局pip清华镜像源
  7. conda创建python3.10虚拟环境(3.11、3.12也可以,不用最新3.13)
  8. 根据你选择的python版本,直接通过官网https://download.pytorch.org/whl/cu126 下载对应版本的torch包(文件大小:2.32GB,用迅雷下载更快)

二、NVIDIA CUDA Toolkit12.6.3+cudnn软件安装

安装完NVIDIA 独立显卡驱动,可以打开CMD(命令提示符),
输入命令nvidia-smi

在这里插入图片描述
命令显示结果
Driver Vsrsion 显卡版本是560.94
CUDA Version CUDA版本是12.6

CUDA Toolkit版本要等于小于显卡驱动的CUDA12版本,因此下载CUDA Toolkit12.6.3和 cuDNN9.2.0 12.X
对于已经安装NVIDIA显卡驱动的同学,只要你的NVIDIA显卡是16系或20系30系以及40系的显卡,都建议使用560.94显卡驱动,可以省去很多麻烦。

CUDA工具包网站
https://developer.nvidia.com/cuda-toolkit-archive
在这里插入图片描述

cuda_12.6.3_561.17_windows 的下载地址:

点击下载https://developer.download.nvidia.com/compute/cuda/12.6.3/local_installers/cuda_12.6.3_561.17_windows.exe

深度神经网络库 cuDNN 9.2.0 的下载地址:

点击下载
https://developer.download.nvidia.cn/compute/cudnn/redist/cudnn/windows-x86_64/cudnn-windows-x86_64-9.2.0.82_cuda12-archive.zip

中文官网 https://developer.nvidia.cn/cudnn/

首先自定义安装CUDA,仅安装第一项CUDA,其他组件不安装。
安装目录更改为 D:\CUDA 或者其他空间大的盘,
然后解压cudnn,把里面的所有文件都移动到CUDA安装目录内。

在这里插入图片描述

不用重启电脑,CUDA自动会添加环境变量
查看环境变量方法:鼠标右击“视窗开始按钮”——“系统”——“高级系统设置”——“环境变量”——“系统变量”,
可以看到系统变量里面已经有“CUDA_PATH”和“CUDA_PATH_V12_6” 两个变量。

在这里插入图片描述

然后在搜索栏输入CMD 开“命令提示符”输入命令 nvcc -V
有显示Build cuda_12.6, 表示CUDA安装成功!

在这里插入图片描述
Win11系统显示如下
在这里插入图片描述

三、Anaconda3 + python3 软件安装

Anaconda3-5.3.0-Windows-x86_64.exe

Anaconda3-5.3.0(自带python3.7,文件大小632MB) 下载地址: 点击下载
可以通过conda虚拟环境安装python任意版本,所以目前选择这个版本。

你也可以用最新的 Anaconda3-2024.10-1-Windows-x86_64.exe ,自带python3.12,
文件大小:950MB,下载地址:点击下载
Anaconda清华镜像站 https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/

1. 安装Anaconda3-5.3.0。

安装目录更改为 D:\Anaconda3 或者其他空间大的盘。
Win10要勾选2个安装选项,Win11直接下一步,提示安装VS Code可以跳过,用电脑管家安装VS Code

在这里插入图片描述
在这里插入图片描述
2. 设置conda清华镜像(跳过这个步骤)

在程序中打开 Anaconda Prompt
添加conda清华镜像下载通道命令:(不用,可能导致创建conda虚拟环境失败)
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
启用通道命令:
conda config --set show_channel_urls yes
conda config --set ssl_verify false
显示通道命令: conda config --show channels

如果创建conda虚拟环境时已经出现报错,请删除所有镜像通道。
删除通道命令: conda config --remove-key channels

在这里插入图片描述
3. 创建pytorch虚拟环境,使用python3.10版本

在程序中打开 Anaconda Prompt
创建环境命令: conda create -n pytorch python=3.10
这样就创建pytorch名字的conda虚拟环境,使用的是python3.10。
系统生成虚拟环境目录 D:\Anaconda3\envs\pytorch

激活环境命令: conda activate pytorch
显示环境列表命令: conda env list
删除环境命令: conda env --remove pytorch

在这里插入图片描述

四、Pytorch2.6 软件安装

1.设置全局 pip 源:
全局pip清华镜像源命令:
pip config set global.index-url https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple

2. 检查全局 pip 源命令:
pip config list

3. 下载pytorch2.6包

升级pip包管理工具命令: python -m pip install --upgrade pip

pytorch官网的安装命令:
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu126

这个命令告诉我们pytorch2.6是3个包组成: torch、torchvision、torchaudio,由于torch包有2.32G很大,外网下载慢,且清华镜像没有起到加速作用,因此我们先用迅雷提前下载torch2.6包,然后安装。

用迅雷下载torch2.6包到D盘根目录

torch下载网页 :https://download.pytorch.org/whl/torch/
这里要下载和虚拟环境相同 python3.10版本的torch包
文件名:torch-2.6.0+cu126-cp310-cp310-win_amd64.whl
在下载网页中按Ctrl+F,复制文件名,快速找到需要的torch包,
然后右击文件名复制链接,用迅雷下载到D盘根目录。

4. 开始安装torch包
首先激活pytorch环境命令:
conda activate pytorch
然后进入D盘根目录命令 d:
查看文件命令 dir
确保看到 torch-2.6.0+cu126-cp310-cp310-win_amd64.whl 安装包
安装torch包命令: pip3 install torch-2.6.0+cu126-cp310-cp310-win_amd64.whl
安装另外2个包命令:
pip3 install torchvision torchaudio --index-url https://download.pytorch.org/whl/cu126

5. 查看包列表命令:conda list
这里看到torch 2.6.0+cu126 表示安装完成。
在这里插入图片描述
6. 最后验证pytorch
首先输入命令:python
启动python3.10

然后输入命令:

import torch
print(torch.__version__)
print(torch.cuda.is_available())
print(torch.version.cuda)

显示2.6.0+cu126 表示 PyTorch2.6 安装成功!
Ture表示cuda运行。
12.6表示cuda版本。
在这里插入图片描述

关于 PyTorch 2.6 的文档或特性,目前官方尚未发布该版本的相关信息。PyTorch 的最新稳定版可能低于此版本号,因此无法提供具体的功能列表或更新日志。然而,可以基于已知的信息推测一些潜在的方向发展趋势。 以下是有关如何查找安装 PyTorch 版本以及其功能的一些指导: ### 查找并安装特定版本PyTorch 为了确保能够获取到指定版本PyTorch 并正确安装,推荐使用 `pip` 或者 Conda 来管理依赖环境。以下是一个通用方法来安装某个特定版本PyTorch: ```bash pip install torch==2.0.1 torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 ``` 上述命令会安装 PyTorch2.0.1 版本及其相关组件[^3]。需要注意的是,在实际操作前应访问 [PyTorch官网](https://pytorch.org/get-started/previous-versions/) 获取最新的兼容性支持说明。 ### 虚拟环境配置 正如之前提到的内容所强调的一样,强烈建议在创建独立的 Python 虚拟环境下执行这些操作以防止污染全局解释器的状态。这可以通过如下方式实现: ```bash python -m venv pytorch_env source pytorch_env/bin/activate pip install -U pip setuptools wheel pip install torch==2.0.1 torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 ``` ### 关于未来版本特性的预测 尽管当前不存在确切描述 PyTorch 2.6 功能集的具体文件,但从以往迭代来看,新版本可能会引入以下几个方面的改进: - **性能优化**: 提升模型训练速度与推理效率。 - **API 改善**: 增强易用性及开发者体验。 - **硬件加速支持增强**: 更好地适配新型 GPU TPU 架构。 如果确实需要了解更详细的变更记录,则需等待官方正式公布相关内容或者查阅开发分支中的提交历史作为参考依据。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值