Tensorflow之环境版本匹配问题

相信很多同学在用tensorflow的时候,都被环境折磨得不要不要的…只要有某一个包不匹配,就会出现运行错误……版本高了低了都可能出现问题……(真的是恶心)

1 tensorflow与pip包对应关系

万幸,有人把环境做了一个系统的整理,只需要找到你安装的tensorflow版本,就可以看到你需要匹配的其它包的版本信息

链接是:https://docs.floydhub.com/guides/tensorflow/链接已失效,未找到更新链接

比如你要安装tensorflow-1.14,你可以看到其它python包的版本信息如下

absl-py==0.8.0
annoy==1.16.0
args==0.1.0
astor==0.8.0
atari-py==0.2.6
attrs==19.1.0
backcall==0.1.0
bleach==3.0.2
blis==0.2.4
box2d-py==2.3.8
cachetools==3.1.1
certifi==2019.6.16
cffi==1.12.3  (GPU machines)
chardet==3.0.4
click==6.7
clint==0.5.1
cloudpickle==1.2.1  (GPU machines)
cudf-cuda92==0.6.1  (GPU machines)
cuml-cuda92==0.6.1  (GPU machines)
cupy==5.1.0         (GPU machines)
cupy-cuda92==6.3.0  (GPU machines)
cycler==0.10.0
cymem==2.0.2
Cython==0.29.2
cytoolz==0.10.0
decorator==4.3.0
defusedxml==0.5.0   (GPU machines)
dlib==19.17.0
entrypoints==0.2.3
fastrlock==0.4  (GPU machines)
Flask==1.1.0
floyd-cli==0.11.17
funcsigs==1.0.2
future==0.17.1
gast==0.2.2
google-pasta==0.1.7
grpcio==1.23.0
gym==0.14.0
gym-retro==0.7.0
h5py==2.9.0
idna==2.8
imageio==2.5.0
importlib-metadata==0.8
incremental==17.5.0
ipykernel==5.1.0
ipython==7.2.0
ipython-genutils==0.2.0
ipywidgets==7.4.2
itsdangerous==1.1.0
jedi==0.13.2
jellyfish==0.6.1
Jinja2==2.10.1
joblib==0.13.2
json5==0.8.5
jsonschema==3.0.2
jupyter==1.0.0
jupyter-client==5.2.4
jupyter-console==6.0.0
jupyter-core==4.4.0
jupyterlab==1.0.9
jupyterlab-server==1.0.6
kaggle==1.5.5
Keras==2.2.4
Keras-Applications==1.0.8
Keras-Preprocessing==1.1.0
kiwisolver==1.0.1
llvmlite==0.29.0  (GPU machines)
Markdown==3.1.1
MarkupSafe==1.1.0
marshmallow==2.20.2
matplotlib==3.0.2
menpo==0.9.2
mistune==0.8.4
mock==3.0.5
mpmath==1.1.0
murmurhash==1.0.2
nbconvert==5.4.0
nbformat==4.4.0
networkx==2.3
nltk==3.4.5
notebook==5.6.0
numba==0.41.0  (GPU machines)
numpy==1.15.4
nvstrings-cuda92==0.3.0.post1  (GPU machines)
opencv-contrib-python==3.4.0.12
opencv-python==4.1.0.25
pandas==0.23.4
pandocfilters==1.4.2
parso==0.3.1
path.py==11.5.0
pathlib2==2.3.4
pbr==5.4.2
pexpect==4.6.0
pickleshare==0.7.5
Pillow==5.4.0
plac==0.9.6
plotly==4.1.0
preshed==2.0.1
prometheus-client==0.5.0
prompt-toolkit==2.0.7
protobuf==3.9.1
ptyprocess==0.6.0
pyarrow==0.12.1  (GPU machines)
pycparser==2.19  (GPU machines)
pydot==1.4.1
pyemd==0.5.1
pyglet==1.3.2
Pygments==2.3.1
pynvrtc==9.2
PyOpenGL==3.1.0
PyOpenGL-accelerate==3.1.0
pyparsing==2.3.0
Pyphen==0.9.5
pyrsistent==0.15.4
python-dateutil==2.7.5
python-slugify==3.0.3
pytz==2018.7
PyWavelets==1.0.3
PyYAML==3.13
pyzmq==17.1.2
qtconsole==4.4.3
raven==6.10.0
requests==2.22.0
requests-toolbelt==0.9.1
retrowrapper==0.3.0
retrying==1.3.3
scikit-image==0.15.0
scikit-learn==0.20.2
scikit-umfpack==0.3.2
scipy==1.2.0
seaborn==0.9.0
Send2Trash==1.5.0
six==1.12.0
sklearn==0.0
spacy==2.1.8
srsly==0.1.0
sympy==1.3
tabulate==0.8.3
tensorboard==1.14.0
tensorflow==1.14.0
tensorflow-estimator==1.14.0
termcolor==1.1.0
terminado==0.8.1
testpath==0.4.2
text-unidecode==1.2
textacy==0.8.0
tflearn==0.3.2
thinc==7.0.8
toolz==0.10.0
tornado==5.1.1
tqdm==4.35.0
traitlets==4.3.2
urllib3==1.24.3
uWSGI==2.0.18
virtualenv==16.2.0
wasabi==0.2.2
wcwidth==0.1.7
webencodings==0.5.1
Werkzeug==0.15.5
widgetsnbextension==3.4.2
wrapt==1.11.2
xgboost==0.81
zipp==0.3.3  (GPU machines)
zmq==0.0.0

这样我们就可以根据这些信息来安装其它包了,减少入坑次数……

2 tensorflow与keras对应关系

链接:https://docs.floydhub.com/guides/environments/链接已失效,未找到更新链接

FrameworkEnv name (--env parameter)DescriptionDocker ImagePackages and Nvidia Settings
TensorFlow 2.2tensorflow-2.2TensorFlow 2.2.0 + Keras 2.3.1 on Python 3.7.floydhub/tensorflowTensorFlow-2.2
TensorFlow 2.1tensorflow-2.1TensorFlow 2.1.0 + Keras 2.3.1 on Python 3.6.floydhub/tensorflowTensorFlow-2.1
TensorFlow 2.0tensorflow-2.0TensorFlow 2.0.0 + Keras 2.3.1 on Python 3.6.floydhub/tensorflowTensorFlow-2.0
TensorFlow 1.15tensorflow-1.15TensorFlow 1.15.0 + Keras 2.3.1 on Python 3.6.floydhub/tensorflowTensorFlow-1.15
TensorFlow 1.14tensorflow-1.14TensorFlow 1.14.0 + Keras 2.2.5 on Python 3.6.floydhub/tensorflowTensorFlow-1.14
TensorFlow 1.13tensorflow-1.13TensorFlow 1.13.0 + Keras 2.2.4 on Python 3.6.floydhub/tensorflowTensorFlow-1.13
TensorFlow 1.12tensorflow-1.12TensorFlow 1.12.0 + Keras 2.2.4 on Python 3.6.floydhub/tensorflowTensorFlow-1.12
tensorflow-1.12:py2TensorFlow 1.12.0 + Keras 2.2.4 on Python 2.floydhub/tensorflow
TensorFlow 1.11tensorflow-1.11TensorFlow 1.11.0 + Keras 2.2.4 on Python 3.6.floydhub/tensorflowTensorFlow-1.11
tensorflow-1.11:py2TensorFlow 1.11.0 + Keras 2.2.4 on Python 2.floydhub/tensorflow
TensorFlow 1.10tensorflow-1.10TensorFlow 1.10.0 + Keras 2.2.0 on Python 3.6.floydhub/tensorflowTensorFlow-1.10
tensorflow-1.10:py2TensorFlow 1.10.0 + Keras 2.2.0 on Python 2.floydhub/tensorflow
TensorFlow 1.9tensorflow-1.9TensorFlow 1.9.0 + Keras 2.2.0 on Python 3.6.floydhub/tensorflowTensorFlow-1.9
tensorflow-1.9:py2TensorFlow 1.9.0 + Keras 2.2.0 on Python 2.floydhub/tensorflow
TensorFlow 1.8tensorflow-1.8TensorFlow 1.8.0 + Keras 2.1.6 on Python 3.6.floydhub/tensorflowTensorFlow-1.8
tensorflow-1.8:py2TensorFlow 1.8.0 + Keras 2.1.6 on Python 2.floydhub/tensorflow
TensorFlow 1.7tensorflow-1.7TensorFlow 1.7.0 + Keras 2.1.6 on Python 3.6.floydhub/tensorflowTensorFlow-1.7
tensorflow-1.7:py2TensorFlow 1.7.0 + Keras 2.1.6 on Python 2.floydhub/tensorflow
TensorFlow 1.5tensorflow-1.5TensorFlow 1.5.0 + Keras 2.1.6 on Python 3.6.floydhub/tensorflowTensorFlow-1.5
tensorflow-1.5:py2TensorFlow 1.5.0 + Keras 2.1.6 on Python 2.floydhub/tensorflow
TensorFlow 1.4tensorflow-1.4TensorFlow 1.4.0 + Keras 2.0.8 on Python 3.6.floydhub/tensorflow
tensorflow-1.4:py2TensorFlow 1.4.0 + Keras 2.0.8 on Python 2.floydhub/tensorflow
TensorFlow 1.3tensorflow-1.3TensorFlow 1.3.0 + Keras 2.0.6 on Python 3.6.floydhub/tensorflow
tensorflow-1.3:py2TensorFlow 1.3.0 + Keras 2.0.6 on Python 2.floydhub/tensorflow
TensorFlow 1.2tensorflow-1.2TensorFlow 1.2.0 + Keras 2.0.6 on Python 3.5.floydhub/tensorflow
tensorflow-1.2:py2TensorFlow 1.2.0 + Keras 2.0.6 on Python 2.floydhub/tensorflow
TensorFlow 1.1tensorflowTensorFlow 1.1.0 + Keras 2.0.6 on Python 3.5.floydhub/tensorflow
tensorflow:py2TensorFlow 1.1.0 + Keras 2.0.6 on Python 2.floydhub/tensorflow
TensorFlow 1.0tensorflow-1.0TensorFlow 1.0.0 + Keras 2.0.6 on Python 3.5.floydhub/tensorflow
tensorflow-1.0:py2TensorFlow 1.0.0 + Keras 2.0.6 on Python 2.floydhub/tensorflow
TensorFlow 0.12tensorflow-0.12TensorFlow 0.12.1 + Keras 1.2.2 on Python 3.5.floydhub/tensorflow
tensorflow-0.12:py2TensorFlow 0.12.1 + Keras 1.2.2 on Python 2.floydhub/tensorflow
PyTorch 1.5pytorch-1.5PyTorch 1.5.0 + fastai 1.0.61 on Python 3.7.floydhub/pytorchPyTorch-1.5
PyTorch 1.4pytorch-1.4PyTorch 1.4.0 + fastai 1.0.60 on Python 3.6.floydhub/pytorchPyTorch-1.4
PyTorch 1.3pytorch-1.3PyTorch 1.3.0 + fastai 1.0.60 on Python 3.6.floydhub/pytorchPyTorch-1.3
PyTorch 1.2pytorch-1.2PyTorch 1.2.0 + fastai 1.0.60 on Python 3.6.floydhub/pytorchPyTorch-1.2
PyTorch 1.1pytorch-1.1PyTorch 1.1.0 + fastai 1.0.57 on Python 3.6.floydhub/pytorchPyTorch-1.1
PyTorch 1.0pytorch-1.0PyTorch 1.0.0 + fastai 1.0.51 on Python 3.6.floydhub/pytorchPyTorch-1.0
pytorch-1.0:py2PyTorch 1.0.0 on Python 2.floydhub/pytorch
PyTorch 0.4pytorch-0.4PyTorch 0.4.1 on Python 3.6.floydhub/pytorchPyTorch-0.4
pytorch-0.4:py2PyTorch 0.4.1 on Python 2.floydhub/pytorch
PyTorch 0.3pytorch-0.3PyTorch 0.3.1 on Python 3.6.floydhub/pytorchPyTorch-0.3
pytorch-0.3:py2PyTorch 0.3.1 on Python 2.floydhub/pytorch
PyTorch 0.2pytorch-0.2PyTorch 0.2.0 on Python 3.5floydhub/pytorch
pytorch-0.2:py2PyTorch 0.2.0 on Python 2.floydhub/pytorch
PyTorch 0.1pytorch-0.1PyTorch 0.1.12 on Python 3.floydhub/pytorch
pytorch-0.1:py2PyTorch 0.1.12 on Python 2.floydhub/pytorch
Theano 0.9theano-0.9Theano rel-0.8.2 + Keras 2.0.3 on Python3.5.floydhub/theano
theano-0.9:py2Theano rel-0.8.2 + Keras 2.0.3 on Python2.floydhub/theano
CaffecaffeCaffe rc4 on Python3.5.floydhub/caffe
caffe:py2Caffe rc4 on Python2.floydhub/caffe
TorchtorchTorch 7 with Python 3 env.floydhub/torch
torch:py2Torch 7 with Python 2 env.floydhub/torch
Chainer 1.23chainer-1.23Chainer 1.23.0 on Python 3.floydhub/chainer
chainer-1.23:py2Chainer 1.23.0 on Python 2.floydhub/chainer
Chainer 2.0chainer-2.0Chainer 1.23.0 on Python 3.floydhub/chainer
chainer-2.0:py2Chainer 1.23.0 on Python 2.floydhub/chainer
MxNet 1.0mxnetMxNet 1.0.0 on Python 3.6.floydhub/mxnet
mxnet:py2MxNet 1.0.0 on Python 2.floydhub/mxnet
### 安装和配置 TensorFlow GPU 版本 #### 1. 确认硬件需求 为了成功安装并运行 TensorFlow 的 GPU 版本,需要确认计算机具备 NVIDIA 显卡以及支持 CUDA 计算能力的驱动程序。通常建议显卡计算能力至少达到 3.5 或更高版本[^1]。 #### 2. 配置环境依赖项 在安装 TensorFlow-GPU 前,需先安装对应的 CUDA 和 cuDNN 库。这些库提供了必要的底层接口来加速深度学习模型训练中的矩阵运算。具体操作如下: - **CUDA Toolkit**: 下载与目标 TensorFlow 版本兼容的 CUDA 工具包。例如,对于 TensorFlow 2.x 版本,可能需要 CUDA 10.1 或更新版本[^4]。 - **cuDNN SDK**: 同样地,下载匹配当前 CUDA 版本的 cuDNN 软件开发工具包,并将其解压至指定路径下以便系统能够识别加载该动态链接库文件。 完成上述两步后,请确保已将 `PATH` 变量设置为包含新安装好的 CUDA bin 文件夹位置;同时也要把 cuDNN lib 子目录加入到 LD_LIBRARY_PATH 中去(Linux/MacOS),或者通过编辑系统的 PATH 来实现这一点 (Windows)[^4]。 #### 3. 创建 Python 虚拟环境 推荐使用 Conda 或者 Virtualenv 构建独立的工作区以隔离不同项目之间的依赖冲突问题。这里我们采用 Anaconda/Miniconda 方式为例说明如何新建名为 "tf_gpu_env" 的专属虚拟空间及其后续激活步骤: ```bash # 使用 conda 创建新的 python 环境, 并命名为 tf_gpu_env conda create --name tf_gpu_env python=3.8 # 激活刚刚创建出来的这个特定用途的新环境 conda activate tf_gpu_env ``` #### 4. 安装 TensorFlow GPU 版本及相关依赖 进入刚才建立起来的那个专门用于处理 Tensorflow 相关工作的环境中之后,执行下面这条 pip install 命令即可顺利完成整个流程当中的最后一步——即真正意义上的引入官方发行版里的那个针对图形处理器优化过的变体形式(tensorflow-gpu): ```bash pip install tensorflow-gpu==<version> ``` 注意替换 `<version>` 成实际所需的稳定发布号,比如目前最新的可能是类似于 '2.9' 这样的数值。 另外还可以考虑额外增加一些辅助性的扩展模块进来提升用户体验度或者是简化某些复杂场景下的编程工作负担,像 NumPy 数组管理功能增强插件等等都可以在此阶段一并解决掉: ```bash pip install numpy matplotlib ipykernel jupyterlab scikit-learn pandas seaborn opencv-python-headless keras-preprocessing h5py pydot graphviz tensorboard-plugin-profile albumentations imgaug efficientnet plotly bokeh holoviews datashader geopandas folium shap statsmodels yellowbrick imbalanced-learn category_encoders featuretools optuna ray dask mlflow watermark memory_profiler line_profiler gprof2dot snakeviz black isort yapf pylint mypy nbstripout pre-commit git-lfs fastapi uvicorn aiofiles starlette requests pillow tqdm beautifulsoup4 lxml html5lib cssselect scrapy selenium webdriver-manager boto3 google-cloud-storage azure-storage-blob s3fs pyspark spark-nlp transformers datasets allennlp flair spacy gensim nltk textblob vadersentiment bertopic sentence-transformers umap-learn hdbscan sklearn-decomposition cuml rapids-cuml modin-dask etc. ``` 以上列举了一些常见的机器学习框架、数据科学工具集以及其他实用型第三方库列表供参考选用[^2]。 #### 5. 测试安装是否成功 切换回之前所提到的那个专门为本次实验准备出来的小天地里头去吧! 接下来就让我们一起来验证一下前面辛苦搭建的一切成果到底有没有白费力气咯? 执行下列简单的几行代码片段就能够快速得到答案啦! ```python import tensorflow as tf print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU'))) ``` 如果一切正常的话,则应该可以看到类似这样的输出结果展示在屏幕上:"Num GPUs Available: X",其中X代表检测发现的实际可用物理设备数量[^3]。 --- ###
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宗而研之

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值