【理论学习】
前言
写在前面此系列文章个人对于学习论文及综述的相关总结和个人看法,如有错误,望大家谅解。
“基于深度神经网络的格子玻尔兹曼算法”总结
一、概述
格子玻尔兹曼方法起源自格子气自动机,是一种新兴的计算流体力学方法,相较于传统计算流体力学,是一种新兴的计算流体力学方法,相较于传统计算流体力学方法,LBM有易于处理边界条件,适合复杂几何形状,程序结构简单及可并行件,适合复杂几何形状,程序结构简单及可并行性高等优点。
二、学习内容
在本文中可以学习到在降低CFD模型计算复杂度方面研究较多的维法。C-LBM模型是以卷积长短期记忆网络组建的编码网络和以残差神经网络组建的解码网络为主体的深度神经网络模型,通过输入带有时间和空间双重维度的流场信息取得对跨越多个迭代后流场情况的预测结果。该模型的优势在于具备适应非稳态问题和稳态问题过程模拟的能力,同时具有较好的精度。LBM中主要研究的流畅物理量是粒子速度分布函数,通过刻画粒子速度分布函数随时空的变化,完成对各种宏观物理量的求解。ConLSTM拥有抗退化的能力,可以降低本模型的训练难度,使得模型的拟合效果更好。
三、个人感悟
个人感悟:格子玻尔兹曼算法应用于流体力学中,建立新的模型减少资源消耗,提高速度,其中采用离散粒子速度分布函数。进行多次对比实验训练模型。对于某些领域可以采用建立模型的方式来实现某些目的,模型的建立需要经过大量的实验,精准的运算。任重而道远。
四、参考文献
[1]陈辛阳,聂滋森,蒋子超,杨耿超 & 姚清河.().基于深度神经网络的格子玻尔兹曼算法. 中山大学学报(自然科学版)(),. doi:10.13471/j.cnki.acta.snus.2020.07.09.2020B076.